• Title/Summary/Keyword: repeated firing

Search Result 29, Processing Time 0.024 seconds

The effects on the color change of dental porcelain due to repeated firing (도재 소성 횟수가 색조변화에 미치는 영향)

  • Kim, Wook-Tae;Park, Chang-Keun
    • Journal of Technologic Dentistry
    • /
    • v.30 no.1
    • /
    • pp.33-39
    • /
    • 2008
  • Recently natural characteristics and esthetics have been interested increasing in clinical dentistry. Thus the evaluation of the shade of dental porcelain has become an important part in dental research. Noritake Super Porcelain EX-3 Vita shade A2 (Noritake, Japan) Vintage HaLo Vita shade A2 (Shofu, Japan), Vita omega 900 Vitapan 3D-master shade 2M2 (Vita, Germany) were conducted for six times for repeated firing in a way to observe the change of color with respect to the number of firing. The repeated firing was implemented with the vacuum firing and air firing, and by using Shade Eye-EX Chroma meter (Shofu, U.S.A.), the changes in values of shade, value and chroma were compared. With the above results, the change of color was not noticed only in Vita when repeated firing was applied.

  • PDF

An Experimental study on The Porcelain Shade Stability after Repeated Firing (도재의 반복성이 Shade에 미치는 영향)

  • Kim, Uoong-Chul;Lee, Boung-Kee
    • Journal of Technologic Dentistry
    • /
    • v.4 no.1
    • /
    • pp.5-7
    • /
    • 1982
  • This study was performed to examine the effect of repeated firing on porcelain color stability. Sixty sepcimens of generally uniform size and shape(9.7 12mm)were prepared using the manufactorer's specifications and among them 50 specimens that showed no defect after firing procedure were selected. All samples, abraded with sandpaper disc, ultrasonically cleaned, and air fired to amedium glaze were devided into 10 groups according to the number of repeated firing and, upon completion, mounted on a 13 by 16cm board. 30 persons(five dentists, ten dental techanicians, and fiftheen students) were asked to compare the samples for variations, in hue, chroma and value under natural and artificial light. The results were as follows:(1) There were no color change detected in the first four firings.(2) Slight color change were noticed in subsequent firings(ie: greater decreases in value with slight increases In chroam)(3) However, the hue remained constant in all 10 groups after repeated firings.

  • PDF

The effect of repeated porcelain firings on corrosion resistance of different dental alloys

  • Tuncdemir, Ali Riza;Karahan, Ismail;Polat, Serdar;Malkoc, Meral Arslan;Dalkiz, Mehmet
    • The Journal of Advanced Prosthodontics
    • /
    • v.5 no.1
    • /
    • pp.44-50
    • /
    • 2013
  • PURPOSE. The aim of this study was to evaluate the effects of repeated porcelain firing process on the corrosion rates of the dental alloys. MATERIALS AND METHODS. Cr-Co, Cr-Ni and Pd-Ag alloys were used for this study. Each metal supported porcelain consisted of 30 specimens of 10 for 7, 9 and 11 firing each. Disc-shaped specimens 10 mm diameter and 3 mm thickness were formed by melting alloys with a propane-oxygen flame and casted with a centrifuge casting machine and then with the porcelain veneer fired onto the metal alloys. Corrosion tests were performed in quintuplicate for each alloy (after repeated porcelain firing) in Fusayama artificial saliva solution (pH = 5) in a low thermal-expansion borosilicate glass cell. Tamhane and Sheffe test was used to compare corrosion differences in the results after repeated firings and among 7, 9 and 11 firing for each alloy. The probability level for statistical significance was set at ${\alpha}$=0.05. RESULTS. The corrosion resistance was higher (30 mV), in case of 7 times firing (Commercial). On the other hand, it was lower in case of 11 times firing (5 mV) (P<.05). Conclusion. Repeated firings decreased corrosion resistance of Pd-Ag, Cr-Co and Cr-Ni alloys. The Pd-Ag alloy exhibited little corrosion in in vitro tests. The Cr-Ni alloy exhibited higher corrosion resistance than Cr-Co alloys in in vitro tests.

A STUDY ON THE DISTORTION OF THE COPINGS FOR CERAMOMETAL CROWNS DURING REPEATED FIRING (도재전장금관을 위한 코핑의 변형에 관한 연구)

  • Lee, Ki-Hong;Chung, Hun-Young;Lee, Sun-Hyung;Yang, Jae-Ho
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.35 no.4
    • /
    • pp.706-718
    • /
    • 1997
  • Ceramometal crowns are common restorations in fixed prosthodontics because of their casting accuracy, the high strength properties of the metal, and the cosmetic appearance of porcelain. However, deterioration of the initial fit of the metal coping has been observed after the porcelain firing cycle. The distortion due to repeated firing makes it difficult to fit crown margin and elicits microleakage. The major causes of distortion are the residual stress that accumulate during wax-up, casting, cold work and the induced stress caused by the mismatch of porcelain-metal thermal contraction. This study examined the marginal fit changes of metal copings in relation to repeated firing and the effects of heat treatment that reduce the distortion resulted from residual stress. The marginal changes of the copings that were treated with conventional method and those treated with heat before repeated firing, were evaluated. The metal die which represented preparations of a maxillary central incisor was fabricated, and 45 wax patterns were cast with nonprecious metal alloys. The heat treatment of each group was performed as follows. Group 1(control) : Casting - Devesting - Cold work - Firing Group 2 : Casting - Heat treatment - Devesting - Cold work - Firing Group 3 : Casting - Devesting - Cold work - Reinvesting - Heat treatment - Devesting - Firing The copings were fired 3 times. After each firing, the marginal fit changes were measured with inverted metallurgical microscope at the 4 reference points located at labial, lingual, and both proximal surface. Measurements were compared, and statistically analyzed. The results were as follows ; 1. In all groups, the highest value of marginal fit changes of the copings studied were found after the first firing cycle. 2. When the distortion of each experimental group at the first firing cycle were compared, group 1 exhibited the greatest changes($20-27{\mu}m$), followed by group 2($9-13{\mu}m$), and group 3($8-10{\mu}m$). 3. The copings treated with heat before devesting(group 2) revealed significantly smaller marginal fit changes than the copings treated with conventional method(group 1). (p<0.01) 4. The copings treated with heat after reinvesting(group 3) revealed significantly smaller marginal fit changes than the copings treated with conventional method(group 1). (p<0.01) 5. No siginificant differences in marginal fit changes were found between the copings treated with heat before devesting(group 2) and the copings treated with heat after reinvesting(group 3). (p>0.01)

  • PDF

Case Study on the Firing Pin Fatigue Destruction of the Korean Rifle by Repeated Impact (반복충격에 의한 한국형 소총의 공이 피로파괴 사례 연구)

  • Lee, Ho-Jun;Choi, Si-Young;Shin, Tae-Sung;Seo, Hyun-Su
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.5
    • /
    • pp.648-655
    • /
    • 2020
  • The firing pin of modern automatic rifles detonates the primer of loaded ammunition via a hammer. During this process, the firing pin receives an impact load and repetitive force throughout the life of the rifle. An endurance test of a rifle showed that the firing pin breaks prematurely at 96.26% of life. Accordingly, a case study was conducted through cause analysis and a reconstruction test. Optical microscopy and scanning electron microscopy of the broken surface of the firing pin showed that a crack began in the circumferential direction of the surface, resulting in a fatigue crack to the core after repeated impact. Crack growth and fatigue destruction occurred at the end due to the repetitive impact and was estimated using a notch. For verification, a sample that produced a 0.03mm circumferential notch was broken at 64.25% of life in the reconstruction test. A test of breakage according to the notch types showed that a 0.3mm and a 0.5mm one-side notch were broken at 66.53% and 50.76%, respectively, and a 0.03mm six-point notch was broken at 85.65%. The endurance life of a sample firing pin with a rough surface and tool mark was examined, but an approximately 381 ㎛ internal crack formed. Through this study, failure for each notch type was considered. These results show that quality control of the notch and surface roughness is essential for ensuring the reliability of a component subjected to repeated impact.

The Effect of Repeated Firing on the Color Difference of a Metal-Ceramic System with Different Porcelain Powder (다른 특성을 가지는 도재가 반복소성에 따라 색조변화에 미치는 영향)

  • Hwang, Jae-Sun
    • Journal of Technologic Dentistry
    • /
    • v.31 no.1
    • /
    • pp.23-36
    • /
    • 2009
  • The goal of esthetic restoration is to achieve morphologic, optical, and biologic acceptance. Creation of a natural looking ceramic restoration, which blends harmoniously with surrounding dentition, is not always achieved. A successful color match is an important aspect of any esthetic dental restoration. Since natural enamel has inherent translucency, it is important that ceramic restorations reproduce the translucency and color of the natural teeth. However, the final color match of porcelain crowns to adjacent natural dentition remains some problem. Difficulties related to color matching arise from the structural differences that exist between metal ceramic crowns and natural teeth, the limited range of available ceramic shades, inadequate shade guides, different types of metal alloys, repeated firing, the condensation technique, and varying compositions of ceramic materials. Many factors contribute to the esthetic success of dental restoration: optical properties such as color and its elements of hue, value, and chroma; translucency and opacity; light transmission and scattering; and metamerism and fluorescence. The purpose of this study was to determine the color changes of metal-ceramic system with different veneering porcelain powder after repeated firing. The objectives of this in vitro study were to measure the lightness($L^*$), chromaticity($a^*$), chromaticity($b^*$), chroma($C^*$), hue(h), reflectance(%), color difference(${\Delta}E$). The following conclusions were obtained: 1. An increase in the number of firings resulted in decrease in lightness($L^*$) but increase in chromacticity($a^*$) with all porcelain. After the second sintering resulted in decrease in chromacticity($b^*$) with opaque-dentin porcelain and dentin porcelain but in increase with enamel porcelain and translucency porcelain. And after the second sintering resulted in decrease in chroma($C^*$) with opaque-dentin porcelain and dentin porcelain, but on the whole side in decrease with enamel porcelain and translucency porcelain. 2. After the second firing, a increase in the number of firings resulted in decrease reflectance(%) in all wavelength. 3. There were noticeable color differences(${\Delta}E$) between first sintering and multiple firings(dentin porcelain: 5.29~8.15, opaque-dentin porcelain: 4.83~8.2, enamel porcelain: 8.93~13.15, translucency porcelain: 9.37~12.91), but the color difference(${\Delta}E$) after second sintering were down to 4.87 in all porcelain. 4. Given the NBS Criteria, a 'trace' was not found this study but a 'slight' was found 2-3, 3-5 in dentin porcelain, 2-3 in opaque-dentin porcelain, 3-5, 5-10 in enamel porcelain and translucency porcelain, a 'noticeable' was 2-5, 3-10, 5-10 in dentin porcelain and opaque-dentin porcelain, 2-3, 2-5, 3-10 in enamel porcelain 2-3, 3-10 in translucency porcelain, an 'appreciable' was 1-2, 1-3, 2-10 in dentin porcelain 1-2, 1-3, 2-10, 3-10 in opaque-dentin porcelain, 2-10 in enamel porcelain, 2-5, 2-10 in translucency porcelain, a 'much' was 1-5, 1-10 in dentin porcelain and opaque-dentin porcelain, 1-2, 1-3, 1-5 in enamel porcelain 1-2, 1-3, 1-5, 1-10 in translucency porcelain, a 'very much' was 1-10 in enamel porcelain.

  • PDF

Mechanical properties of zirconia after different surface treatments and repeated firings

  • Subasi, Meryem Gulce;Demir, Necla;Kara, Ozlem;Ozturk, A. Nilgun;Ozel, Faruk
    • The Journal of Advanced Prosthodontics
    • /
    • v.6 no.6
    • /
    • pp.462-467
    • /
    • 2014
  • PURPOSE. This study investigated the influence of surface conditioning procedures and repeated firings on monoclinic content and strength of zirconia before cementation. MATERIALS AND METHODS. Sintered bar-shaped zirconia specimens were subjected to no surface treatment (control), air abrasion, or grinding (n=21). Their roughness was evaluated using a profilometer, and microscope analysis was performed on one specimen of each group. Then, 2 or 10 repeated firings (n=10) were executed, the monoclinic content of specimens was analyzed by X-ray diffraction, and a three-point flexural strength test was performed. Surface roughness values were compared using one-way analysis of variance (ANOVA) and Tukey honestly significant difference (HSD) tests, the monoclinic content values were tested using Kruskal-Wallis and Mann-Whitney U tests, and the flexural strength values were tested using two-way ANOVA and Tukey HSD tests (P=.05). Spearman's correlation test was performed to define relationships among measured parameters. RESULTS. Surface-treated specimens were rougher than untreated specimens and had a higher monoclinic content (P<.005), and the relationship between roughness and monoclinic content was significant (P<.000). Neither surface treatment nor firing significantly affected the flexural strength, but Weibull analysis showed that for the air-abraded samples the characteristic strength was significantly lower after the $10^{th}$ firing than after the $2^{nd}$ firing. CONCLUSION. After firing, a negligible amount of monoclinic content remained on the zirconia surfaces, and rougher surfaces had higher monoclinic contents than untreated surfaces. Multiple firings could be performed if necessary, but the fracture probability could increase after multiple firings for rougher surfaces.

The effect of repeated firings on the color change and surface roughness of dental ceramics

  • Gonuldas, Fehmi;Yilmaz, Kerem;Ozturk, Caner
    • The Journal of Advanced Prosthodontics
    • /
    • v.6 no.4
    • /
    • pp.309-316
    • /
    • 2014
  • PURPOSE. The color of the ceramic restorations is affected by various factors such as brand, thickness of the layered the ceramic, condensation techniques, smoothness of surface, number of firings, firing temperature and thickness of dentin. The aim of this study was to evaluate the color change and surface roughness in dental porcelain with different thicknesses during repeated firings. MATERIALS AND METHODS. Disc-shaped (N=21) metal-ceramic samples (IPS Classic; Ivoclar Vivadent; Shaar, Liechtenstein) with different thickness were exposed to repeated firings. Color measurement of the samples was made using a colorimeter and profilometer was used to determine surface roughness. ANOVA and Tukey tests with repeated measurements were used for statistical analysis. RESULTS. The total thickness of the ceramics which is less than 2 mm significantly have detrimental effect on the surface properties and color of porcelains during firings (P<.05). CONCLUSION. Repeated firings have effects on the color change and surface roughness of the dental ceramics and should be avoided.

The effect of repeated firings on the color change of dental ceramics using different glazing methods

  • Yilmaz, Kerem;Gonuldas, Fehmi;Ozturk, Caner
    • The Journal of Advanced Prosthodontics
    • /
    • v.6 no.6
    • /
    • pp.427-433
    • /
    • 2014
  • PURPOSE. Surface color is one of the main criteria to obtain an ideal esthetic. Many factors such as the type of the material, surface specifications, number of firings, firing temperature and thickness of the porcelain are all important to provide an unchanged surface color in dental ceramics. The aim of this study was to evaluate the color changes in dental ceramics according to the material type and glazing methods, during the multiple firings. MATERIALS AND METHODS. Three different types of dental ceramics (IPS Classical metal ceramic, Empress Esthetic and Empress 2 ceramics) were used in the study. Porcelains were evaluated under five main groups according to glaze and natural glaze methods. Color changes (${\Delta}E$) and changes in color parameters (${\Delta}L$, ${\Delta}a$, ${\Delta}b$) were determined using colorimeter during the control, the first, third, fifth, and seventh firings. The statistical analysis of the results was performed using ANOVA and Tukey test. RESULTS. The color changes which occurred upon material-method-firing interaction were statistically significant (P<.05). ${\Delta}E$, ${\Delta}L$, ${\Delta}a$ and ${\Delta}b$ values also demonstrated a negative trend. The MC-G group was less affected in terms of color changes compared to other groups. In all-ceramic specimens, the surface color was significantly affected by multiple firings. CONCLUSION. Firing detrimentally affected the structure of the porcelain surface and hence caused fading of the color and prominence of yellow and red characters. Compressible all-ceramics were remarkably affected by repeated firings due to their crystalline structure.

Effects of special heat treatment on changes in the hardness of a metal-ceramic alloy during the firing process (금속-도재 보철용 합금의 열처리가 소성과정 중 경도 변화에 미치는 영향)

  • Sung-Min Kim
    • Journal of Technologic Dentistry
    • /
    • v.45 no.3
    • /
    • pp.55-60
    • /
    • 2023
  • Purpose: This study aimed to evaluate the effects of a special heat treatment on Pd-Au-Ag metal-ceramic alloy after degassing treatment and on changes in the hardness of the alloy during the firing process. Methods: Specimen alloys were cast and subjected to degassing at 900℃ for 10 minutes. These specimens were then subjected to a special heat treatment at 600℃ for 15 minutes in a dental porcelain furnace. Further, the specimens were subjected to simulated firing in the porcelain furnace. The resulting specimens were then tested for hardness, and changes in the microstructure were observed. Results: There was a decrease in the hardness of the alloy during the simulated firing of the cast alloy due to the coarsening of the particles. Meanwhile, additional heat treatment after degassing was found to play a crucial role in preventing a decrease in hardness. This treatment effectively suppressed the coarsening of the precipitates during repeated firing at high temperatures. Conclusion: Specific heat treatment of the Pd-Au-Ag metal-ceramic alloy prevented a decrease in its hardness and extended the lifespan of the metal-ceramic prosthesis.