• Title/Summary/Keyword: repeatability of dental scanner

Search Result 11, Processing Time 0.026 seconds

Evaluation on the repeatability of dental white light scanner-based digital impression (치과용 백색광 스캐너를 이용한 impression scanning의 반복 측정에 대한 안정성 평가)

  • Jeon, Jin-Hun;Lee, Kyung-Tak;Kim, Hae-Young;Kim, Ji-Hwan;Kim, Woong-Chul
    • Journal of Technologic Dentistry
    • /
    • v.35 no.1
    • /
    • pp.37-42
    • /
    • 2013
  • Purpose: The purpose of this study was to evaluate the repeatability of dental white light scanner. Methods: The impression(Zerosil, Dreve, Germany) were digitized in white light scanner(Identica, Medit, Korea) to create 3-dimensional surface-models. The distribution of the discrepancies between the number of points in the corresponding CRM models and the point clouds in the others were measured by a matching-software(PowerInspect 2012, Delcam Plc, UK). The discriptive statistics were used for statistical analysis(SPSS 20.0). Results: The measurement of repeatablity showed very good reliability. The mean(SD) discrepancy value on the white light scanner digital models was 8.7(0.67) ${\mu}m$, based on SD and absolute mean values. Conclusion: These in vitro studies showed that repeatability of dental white light scanner is high reliability. These results can be confirmed in further clinical studies.

Repeatability and reproducibility of individual abutment impression, assessed with a blue light scanner

  • Jeon, Jin-Hun;Kim, Dong-Yeon;Lee, Jae-Jun;Kim, Ji-Hwan;Kim, Woong-Chul
    • The Journal of Advanced Prosthodontics
    • /
    • v.8 no.3
    • /
    • pp.214-218
    • /
    • 2016
  • PURPOSE. We assessed the repeatability and reproducibility of abutment teeth dental impressions, digitized with a blue light scanner, by comparing the discrepancies in repeatability and reproducibility values for different types of abutment teeth. MATERIALS AND METHODS. To evaluate repeatability, impressions of the canine, first premolar, and first molar, prepared for ceramic crowns, were repeatedly scanned to acquire 5 sets of 3-dimensional data via stereolithography (STL) files. Point clouds were compared and the error sizes were measured (n=10, per type). To evaluate reproducibility, the impressions were rotated by $10-20^{\circ}$ on the table and scanned. These data were compared to the first STL data and the error sizes were measured (n=5, per type). One-way analysis of variance was used to assess the repeatability and reproducibility of the 3 types of teeth, and Tukey honest significant differences (HSD) multiple comparison test was used for post hoc comparisons (${\alpha}=.05$). RESULTS. The differences with regard to repeatability were 4.5, 2.7, and $3.1{\mu}m$ for the canine, premolar, and molar, indicating the poorest repeatability for the canine (P<.001). For reproducibility, the differences were 6.6, 5.8, and $11.0{\mu}m$ indicating the poorest reproducibility for the molar (P=.007). CONCLUSION. Our results indicated that impressions of individual abutment teeth, digitized with a blue light scanner, had good repeatability and reproducibility.

Three-dimensional evaluation on the repeatability and reproducibility of dental scanner-based digital models (치과용 스캐너로 채득한 디지털 모형의 반복성 및 재현성에 관한 3차원적 평가)

  • Lee, Gyeong-Tak;Kim, Jae-Hong;Kim, Woong-Chul;Kim, Ji-Hwan
    • Journal of Technologic Dentistry
    • /
    • v.34 no.3
    • /
    • pp.213-220
    • /
    • 2012
  • Purpose: The aim of this study was to determine the repeatability and reproducibility of two dental scanners. Methods: The master die and the stone replicas(Kavo, Germany) were digitized in touch-probe scanner(Incise, Renishaw, UK), white light scanner(Identica, Medit, Korea) to create 3-dimensional surface-models. The number of points in the point clouds from each reading were calculated and used as the CAD reference model(CRM). Discrepancies between the points in the 3-dimensional surface models and the corresponding CRM were measured by a matching-software(Power-Inspect R2, Delcam Plc, UK). The t-student test for one samples were used for statistical analysis. Results: The reproducibility of both scanner was within $3{\mu}m$, based on mean value. The mean value between measurements made directly on the touch probe scanner digital models and those made on the white light scanner digital models was $2.20-2.90{\mu}m$, and was statistically significant(P<0.05). Conclusion: With respect to adequate data acquisition, the reproducibility of dental scanner differs. Three-dimensional analysis can be applied to differential quality analysis of the manufacturing process as well as to evaluation of different analysis methods.

White light scanner-based repeatability of 3-dimensional digitizing of silicon rubber abutment teeth impressions

  • Jeon, Jin-Hun;Lee, Kyung-Tak;Kim, Hae-Young;Kim, Ji-Hwan;Kim, Woong-Chul
    • The Journal of Advanced Prosthodontics
    • /
    • v.5 no.4
    • /
    • pp.452-456
    • /
    • 2013
  • PURPOSE. The aim of this study was to evaluate the repeatability of the digitizing of silicon rubber impressions of abutment teeth by using a white light scanner and compare differences in repeatability between different abutment teeth types. MATERIALS AND METHODS. Silicon rubber impressions of a canine, premolar, and molar tooth were each digitized 8 times using a white light scanner, and 3D surface models were created using the point clouds. The size of any discrepancy between each model and the corresponding reference tooth were measured, and the distribution of these values was analyzed by an inspection software (PowerInspect 2012, Delcamplc., Birmingham, UK). Absolute values of discrepancies were analyzed by the Kruskal-Wallis test and multiple comparisons (${\alpha}$=.05). RESULTS. The discrepancy between the impressions for the canine, premolar, and molar teeth were $6.3{\mu}m$ (95% confidence interval [CI], 5.4-7.2), $6.4{\mu}m$ (95% CI, 5.3-7.6), and $8.9{\mu}m$ (95% CI, 8.2-9.5), respectively. The discrepancy of the molar tooth impression was significantly higher than that of other tooth types. The largest variation (as mean [SD]) in discrepancies was seen in the premolar tooth impression scans: $26.7{\mu}m$ (95% CI, 19.7-33.8); followed by canine and molar teeth impressions, $16.3{\mu}m$ (95% CI, 15.3- 17.3), and $14.0{\mu}m$ (95% CI, 12.3-15.7), respectively. CONCLUSION. The repeatability of the digitizing abutment teeth's silicon rubber impressions by using a white light scanner was improved compared to that with a laser scanner, showing only a low mean discrepancy between $6.3{\mu}m$ and $8.9{\mu}m$, which was in an clinically acceptable range. Premolar impression with a long and narrow shape showed a significantly larger discrepancy than canine and molar impressions. Further work is needed to increase the digitizing performance of the white light scanner for deep and slender impressions.

Evaluation of the effect of abutment preparation angles on the repeatability and reproducibility using a blue light model scanner

  • Kim, Dong-Yeon
    • The Journal of Advanced Prosthodontics
    • /
    • v.12 no.4
    • /
    • pp.210-217
    • /
    • 2020
  • PURPOSE. The purpose of the study is to evaluate the repeatability and reproducibility of the abutment angle using a blue light scanner. MATERIALS AND METHODS. 0°, 6°, and 10° wax cast abutment dies were fabricated. Each of the silicone impression was produced using the replicable silicone. Each study die was constructed from the prepared replicable stone used for scans. 3-dimensional data was obtained after scanning the prepared study dies for the repeatability by using the blue light scanner. The prepared 3-dimensional data could have the best fit alignment using 3-dimensional software. For reproducibility, each abutment was used as the first reference study die, and then it was scanned five times per each. 3-dimensional software was used to perform the best fit alignment. The data obtained were analyzed using a nonparametric Kruskal-Wallis H test (α=.05), post hoc Mann-Whitney U test, and Bonferroni correction (α=.017). RESULTS. The repeatability of 0°, 6°, and 10° abutments was 3.9, 4.4 and 4.7 ㎛, respectively. Among them, the 0° abutment had the best value while the 10° abutment showed the worst value. There was a statistically significant difference (P<.05). The reproducibility of 0°, 6°, and 10° abutments was 6.1, 5.5, and 5.3 ㎛, respectively. While the 10° abutment showed the best value, the 0° abutment showed the worst value. However, there was no statistically significant difference (P>.05). CONCLUSION. In repeatability, the 0° abutment showed a positive result. In reproducibility, the 10° abutment achieved a positive result.

Comparative evaluation of repeatability of scanning abutment tooth stone model and impression : Applied assessment of CAD/CAM ISO standard in dentistry (치과 캐드캠 ISO평가 기준에 준한 지대치 경석고 모형 및 인상체 스캐닝의 반복측정안정성 비교 평가)

  • Jeon, Jin-Hun;Hwang, Seong-Sig;Kim, Chong-Myeong;Kim, Dong-Yeon;Kim, Ji-Hwan;Kim, Woong-Chul
    • Journal of Technologic Dentistry
    • /
    • v.39 no.1
    • /
    • pp.1-7
    • /
    • 2017
  • Purpose: The purpose of this in vitro study compared to evaluation of repeatability of scanning abutment tooth stone model and impression applied CAD/CAM ISO standard in dentistry. Methods: To evaluate repeatability of scanning abutment tooth stone model, were repeatedly scanned to obtain 11 data via 3D stereolithography (STL) files. 10 data (STL files) were compared with the first 3D data (STL file), and the error sizes were measured by using 3D superimposing software(n=10). Also, the repeatability of scanning abutment tooth impression was evaluated with the same procedure. Independent t test was performed to evaluate the repeatability of scanning abutment tooth stone model versus impression through root mean square(RMS) and standard deviation(SD)(${\alpha}=0.05$). Results: $RMS{\pm}SD$ with regard to repeatability were $14.7{\pm}2.5{\mu}m$, $17.1{\pm}4.0{\mu}m$, respectively, with scanning abutment tooth stone model and impression(p=0.129). Conclusion: This study results showed a little different repeatability of scanning abutment tooth stone model and impression applied CAD/CAM ISO standard in dentistry, will suggest futures good studies and clinical advantages.

A Study on the Evaluation of Repeated Measurement Stability of 3D Tooth Model Obtained by Several Dental Scanners (수종의 치과용 스캐너로 채득된 3차원 치아 모형의 반복측정 안정성 평가 연구)

  • Bae, Eun-Jeong;Kim, Won-Soo;Lim, Joong Yeon
    • The Journal of the Korea Contents Association
    • /
    • v.21 no.5
    • /
    • pp.996-1003
    • /
    • 2021
  • The purpose of this study is to evaluate the reliability of repeated measurements of several dental scanners. Blue-lighted scanners, white-light scanners and optical-type scanners are used in the study of repeatability in this study. The measurement results were calculated as root mean square (RMS) and the significance level was confirmed by applying the 1-way ANOVA statistical technique (𝛼=.05). According to the statistical analysis, the scanner with the largest RMS value was Z-opt group (38.2 ㎛. Next, D-white was 35.2 ㎛ and the group with the lowest RMS value was I-blue (34.1 ㎛). The comparison of RMS means between each group was not significant (p>.05). From this result, the blue light had the lowest error in repeatability of dental scanners, but no statistical significance. The conclusion of this study is that the study results are clinically acceptable.

Accuracy and precision of polyurethane dental arch models fabricated using a three-dimensional subtractive rapid prototyping method with an intraoral scanning technique

  • Kim, Jae-Hong;Kim, Ki-Baek;Kim, Woong-Chul;Kim, Ji-Hwan;Kim, Hae-Young
    • The korean journal of orthodontics
    • /
    • v.44 no.2
    • /
    • pp.69-76
    • /
    • 2014
  • Objective: This study aimed to evaluate the accuracy and precision of polyurethane (PUT) dental arch models fabricated using a three-dimensional (3D) subtractive rapid prototyping (RP) method with an intraoral scanning technique by comparing linear measurements obtained from PUT models and conventional plaster models. Methods: Ten plaster models were duplicated using a selected standard master model and conventional impression, and 10 PUT models were duplicated using the 3D subtractive RP technique with an oral scanner. Six linear measurements were evaluated in terms of x, y, and z-axes using a non-contact white light scanner. Accuracy was assessed using mean differences between two measurements, and precision was examined using four quantitative methods and the Bland-Altman graphical method. Repeatability was evaluated in terms of intra-examiner variability, and reproducibility was assessed in terms of interexaminer and inter-method variability. Results: The mean difference between plaster models and PUT models ranged from 0.07 mm to 0.33 mm. Relative measurement errors ranged from 2.2% to 7.6% and intraclass correlation coefficients ranged from 0.93 to 0.96, when comparing plaster models and PUT models. The Bland-Altman plot showed good agreement. Conclusions: The accuracy and precision of PUT dental models for evaluating the performance of oral scanner and subtractive RP technology was acceptable. Because of the recent improvements in block material and computerized numeric control milling machines, the subtractive RP method may be a good choice for dental arch models.

Development of 3D Measuring System for Artificial Pontic using Spherical Coordinate System Mechanism (구면좌표계식 기구를 이용한 인공치아의 3차원 측정시스템 개발)

  • Maeng, Hee-Young;Sung, Bong-Hyun
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.4
    • /
    • pp.427-433
    • /
    • 2010
  • With recent increased demand for reverse engineering in dental machining, the 3D laser scanner is widely used for inspection of artificial pontic. In order to overcome the optical drawback of laser scanner, such as irregular scatter, direction of beam, and the influence of surface integrity, it is developed in this study a new 3D measuring system for artificial pontic using spherical coordinate system mechanism by point laser sensor, which keeps the direction of beam normal to surface consistently. The comprehensive integrated system is established to evaluate the improvement of accuracy with data acquisition system. The experimental results for measuring a master ball and pontic models shows the excellent form accuracy and repeatability compared with conventional apparatus. Also, these results shows the possibility to apply this system for the measuring purpose within 0.05mm accuracy of pontic at the sharp edge or margin contour, which was difficult to measure at the conventional systems.

Evaluation of repeated measurement stability of dentition type of maxillary anterior tooth: an in vitro study (상악 전치의 치열 형태에 따른 스캔 반복 측정 안정성 평가: in vitro 연구)

  • Park, Dong-In;Son, Ho-Jung;Kim, Woong-Chul;Kim, Ji-Hwan
    • Journal of Technologic Dentistry
    • /
    • v.41 no.3
    • /
    • pp.211-217
    • /
    • 2019
  • Purpose: The purpose of this study is to evaluate the repeated measurement stability of scans related to dentition type. Methods: A normal model and the crowding and diastema models are also duplicated using duplicating silicon. After that, a plaster model is made using a plaster-type plaster on the duplicate mold, and each model is scanned 5 times by using an extraoral scanner. The gingival part and molar part were deleted from the 3D STL file data obtained through scanning. Using the 3D stl file obtained in this way, data is nested between model groups. Thereafter, RMS values obtained were compared and evaluated. The normality test of the data was performed for the statistical application of repeated measurements with dentition type, and the normality was satisfied. Therefore, the one-way ANOVA test, which is a parametric statistical method, was applied, and post-tests were processed by the Scheffe method. Results: The average size of each RMS in the Normal, Diastema, and Crowding groups was Normal> Crowding> Diastema. However, the standard deviation was in the order of Crowding> Normal> Diastema. The average value of each data is as follows. Diastema model was the smallest ($5.51{\pm}0.55{\mu}m$), followed by the crowding model ($12.30{\pm}2.50{\mu}m$). The normal model showed the maximum error ($13.23{\pm}1.06{\mu}m$). Conclusion: There was a statistically significant difference in the repeatability of the scanning measurements according to the dentition type. Therefore, you should be more careful when scanning the normal intense or crowded dentition than scanning the interdental lining. However, this error value was within the range of applicable errors for all clinical cases.