• Title/Summary/Keyword: repair and replacement cycle

Search Result 48, Processing Time 0.023 seconds

Review on the Integrity Evaluation and Maintenance of Wall-Thinned Pipe (감육배관의 건전성평가 및 정비 관련 기술기준 고찰)

  • Lee, Sung Ho;Lee, Yo Seob;Kim, Hong Deok;Lee, Kyoung Soo;Hwang, Kyeong Mo
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.11 no.2
    • /
    • pp.51-60
    • /
    • 2015
  • Local wall thinning and integrity degradation caused by several mechanisms, such as flow accelerated corrosion, cavitation, flashing and/or liquid droplet impingement, is a main concern in secondary steam cycle piping system of nuclear power plants in terms of safety and operability. Thinned pipe management program (TPMP) has being developed and optimized to reduce the possibility of unplanned shutdown and/or power reduction due to pipe failure caused by wall thinning. In this paper, newest technologies, standards and regulations related to the integrity assessment, repair and replacement of thinned pipe component are reviewed. And technical improvement items in TPMP to secure the reliability and effectiveness are also presented.

A Study of Determination on Usage Life of Production Facilities for Economic LCC (경제적 LCC 를 위한 생산설비의 사용년수에 관한 연구)

  • Yoo, Il-Geon;Park, Won-Jun
    • IE interfaces
    • /
    • v.6 no.2
    • /
    • pp.37-51
    • /
    • 1993
  • This paper studies the economic replacement method for production facilities which requires huge investment but are necessary for higher productivity and competability of products. That is, the general models for the decision of economic life of properties which minimizes the total costs throughout the usage life(Life cycle costs) are generated. Main factors which make influences for the decision of econmic life can be divided by three. These are the change of salvage value, repair and maintenance costs, and availability of production facilities with the passage of usage time. In this paper, the real world data for these three factors are collected and analyzed for the extraction of representative standard forms with the passage of time. And general models for economic replacement methods and optimal usage terms are presented through tables with the combination of the standard forms of these three main factors.

  • PDF

BIM-based Repair&Replacement (R&R) Cost Estimating Process (BIM기반 건축물 수선교체비 산정 프로세스)

  • Park, Jieun;Yu, Jungho
    • Korean Journal of Construction Engineering and Management
    • /
    • v.17 no.2
    • /
    • pp.31-38
    • /
    • 2016
  • In a construction project, the portion for maintenance costs for a building is considerable compared to the initial construction cost. As such, Life Cycle Cost (LCC) analysis is being increasingly utilized to assess the design value of engineering work in Korea. Additionally, the Public Procurement Service in Korea announced that it will be mandatory for all domestic construction projects to adopt BIM. Furthermore, the paradigm for architectural design has shifted from 2D to 3D, and to BIM, which includes a data management system. Within this background, however, there is currently no adequate BIM-based LCC analysis software and the requirements of cost estimation for repair and replacement cost for a building is not completely adequate in BIM tools such as Revit and Archicad. Therefore, this study suggests a process of cost estimation for repair and replacement (R&R) cost based on IFC data. First, we analyzed existing R&R criteria and defined BIM-based requirements when calculating R&R costs. These requirements were extracted from relevant IFC data. Subsequently, this was saved to a database and a BIM-based database was built for R&R cost estimation. Finally, this database was connected with external databases such as R&R Criteria DB and Cost Information DB to calculate R&R costs. This process is expected to improve upon the traditional process of cost estimation of R&R cost by applying a BIM model. The proposed process can contribute to a further standardizing of BIM-based LCC analysis thru application to initial construction costs, energy costs, and other maintenance costs.

Evaluation of Repair Welding Method and PWHT Properties for Degraded CrMoV Casting Steel (열화된 CrMoV 주조강에 대한 보수 용접 방법 및 후열처리 특성 평가)

  • Hong, Jaehun;Jun, Moonchang;Jung, Kwonsuk;Lee, Young-Kook
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.35 no.3
    • /
    • pp.121-129
    • /
    • 2022
  • Recently the growth of the renewable energy production has caused the flexible operation in LNG combined cycle power plant. Due to the rapid start and stop operations, large CrMoV castings used for turbine casings and valve bodies could be distorted and lead to replacement or welding repair. This study was performed to find out the characteristics of the repair welding for a damaged CrMoV casting steel. A typical field repair method (arc & TIG welding) was applied to making specimens. The degraded N2 packing head sample from the steam turbine was used. The evaluations of weldments were carried out in terms of microstructural characterization, microhardness measurements, tensile, creep-rupture and fatigue tests. Color etching was also applied for better understanding of welding microstructures. As the boundary between HAZ and base material was deteriorated by welding, it caused microstructural changes formed during PWHT and the shortening of the remaining residual life. By comparing the properties according to repair welding method, it was possible to derive what important welding factors were. As a result, arc welding method is more suitable for repair welding on CrMoV castings.

Reliability-based Life Cycle Cost Analysis for Optimal Seismic Upgrading of Bridges

  • Alfredo H-S. Ang;Cho, Hyo-Nam;Lim, Jong-Kwon;An, Joong-San
    • Computational Structural Engineering : An International Journal
    • /
    • v.1 no.1
    • /
    • pp.59-69
    • /
    • 2001
  • This study is intended to propose a systematic approach for reliability-based assessment of life cycle cost (LCC) effectiveness and economic efficiency for cost-effective seismic upgrading of existing bridges. The LCC function is expressed as the sum of the upgrading cost and all the discounted life cycle damage costs, which is formulated as a function of the Park-Ang damage index and structural damage probability. The damage costs are expressed in terms of direct damage costs such as repair/replacement costs, human losses and property damage costs, and indirect damage costs such as road user costs and indirect regional economic losses. For dealing with a variety of uncertainties associated with earthquake loads and capacities, a simulation-based reliability approach is used. The SMART-DRAIN-2DX, which is a modified version of the well-known DRAIN-2DX, is extended by incor-porating LCC analysis based on the LCC function developed in the study. Economic efficiencies for optimal seismic upgradings of the continuous PC segmental bridges are assessed using the proposed LCC functions and benefit-cost ratio.

  • PDF

Life Cycle Cost Analysis Models for Bridge Structures using Artificial Intelligence Technologies (인공지능기술을 이용한 교량구조물의 생애주기비용분석 모델)

  • Ahn, Young-Ki;Im, Jung-Soon;Lee, Cheung-Bin
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.6 no.4
    • /
    • pp.189-199
    • /
    • 2002
  • This study is intended to propose a systematic procedure for the development of the conditional assessment based on the safety of structures and the cost effective performance criteria for designing and upgrading of bridge structures. As a result, a set of cost function models for a life cycle cost analysis of bridge structures is proposed and thus the expected total life cycle costs (ETLCC) including initial (design, testing and construction) costs and direct/indirect damage costs considering repair and replacement costs, human losses and property damage costs, road user costs, and indirect regional economic losses costs. Also, the optimum safety indices are presented based on the expected total cost minimization function using only three parameters of the failure cost to the initial cost (${\tau}$), the extent of increased initial cost by improvement of safety (${\nu}$) and the order of an initial cost function (n). Through the enough numerical invetigations, we can positively conclude that the proposed optimum design procedure for bridge structures based on the ETLCC will lead to more rational, economical and safer design.

A Study on Condition-based Maintenance Policy using Minimum-Repair Block Replacement (최소수리 블록교체 모형을 활용한 상태기반 보전 정책 연구)

  • Lim, Jun Hyoung;Won, Dong-Yeon;Sim, Hyun Su;Park, Cheol Hong;Koh, Kwan-Ju;Kang, Jun-Gyu;Kim, Yong Soo
    • Journal of Applied Reliability
    • /
    • v.18 no.2
    • /
    • pp.114-121
    • /
    • 2018
  • Purpose: This study proposes a process for evaluating the preventive maintenance policy for a system with degradation characteristics and for calculating the appropriate preventive maintenance cycle using time- and condition-based maintenance. Methods: First, the collected data is divided into the maintenance history lifetime and degradation lifetime, and analysis datasets are extracted through preprocessing. Particle filter algorithm is used to estimate the degradation lifetime from analysis datasets and prior information is obtained using LSE. The suitability and cost of the existing preventive maintenance policy are each evaluated based on the degradation lifetime and by using a minimum repair block replacement model of time-based maintenance. Results: The process is applied to the degradation of the reverse osmosis (RO) membrane in a seawater reverse osmosis (SWRO) plant to evaluate the existing preventive maintenance policy. Conclusion: This method can be used for facilities or systems that undergo degradation, which can be evaluated in terms of cost and time. The method is expected to be used in decision-making for devising the optimal preventive maintenance policy.

Maintenance Management System for Long-range Planning of Apartment Buildings (공동주택의 장기수선계획을 위한 유지관리시스템)

  • Lee, Jong-Kyoon
    • KIEAE Journal
    • /
    • v.3 no.3
    • /
    • pp.67-74
    • /
    • 2003
  • The repair and maintenance planning is the principal transaction to prevent from the degradation of apartment buildings to prolong their lives. Various building components as part of living area should be maintained properly and timely before critical defects are realized, then the building life might be extended until the limit of its usability. In other words, various building components such as utilities, finishes and structural members are needed to be repaired and replaced in different time interval after completion. To do this systematically, a maintenance management system for Long-Range Planning (LRP) needs developing. The LRP should be figured out based on the forecast of repairing and replacing cycle of building components according to work trades. And the precise forecast of repairing and replacing time of the components helps to enhance the usability of the developed system. The purpose of this paper is to suggest a system with which apartment building managers carry out the tasks of periodical check, diagnosis and replacement of building components based on the maintenance calendar. By using the system, they can easily forecast repairing and replacing time of the components with the consideration of life cycle of building materials and build the LRP.

Optimum Life-Cycle Cost-Effective Seismic Design for Continuous PSC Bridges Considering Lifetime Expected Seismic Risks (구조 수명간 지진위험도를 고려한 연속 PSC교의 LCC 최적 내진설계)

  • Cho Hyo Nam;Lee Kwang Min;Park Kyung Hoon;Kim Pyung Seok
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.720-723
    • /
    • 2004
  • This study is intended to propose a systematic approach for determining optimum Life-Cycle Cost (LCC)-effective seismic design for continuous PSC bridges considering lifetime expected seismic risks. In the paper, a set of cost function for LCC analysis of bridges is proposed. The total LCC functions consist of initial cost and direct/indirect damage costs considering repair/replacement costs, human losses and property damage costs, road user costs, and indirect socio-economic losses. The damage costs are expressed in terms of Park-Ang median global damage indices (Park and Ang, 1985) and lifetime damage probabilities. The proposed approach is applied to model bridges of both moderate seismicity regions like Korea and high seismicity regions like Japan. Since, in case of bridges, a number of parameters may have an influence on optimal target reliability, various sensitivity analyses are performed in this study. It may be expected that the proposed approach can be effectively utilized for the development of cost-effective performance criteria for design and upgrading of various types of bridges as well as continuous PC bridges.

  • PDF

Optimum Life-Cycle Cost Design of Steel Bridges (강교의 생애주기비용 최적설계)

  • Cho, Hyo-Nam;Lee, Kwang-Min;Kim, Jung-Ho;Choi, Young-Min;Bong, Youn-Jong
    • Journal of Korean Society of Steel Construction
    • /
    • v.15 no.4 s.65
    • /
    • pp.341-358
    • /
    • 2003
  • This paper proposed a general formulation of Life-Cycle Cost (LCC) models and LCC effective design system models of steel bridges suitable for practical implementation. An LCC model for the optimum design of steel bridges included initial cost and direct/indirect rehabilitation costs of a steel bridge as well as repair/replacement costs, loss of contents or fatality and injury losses, road user costs, and indirect socioeconomic losses. The new road user cost model and regional socioeconomic losses model were especially considered because of the traffic network. Illustrative design examples of an actual steel box girder and an orthotropic steel deck bridge were discussed to demonstrate the LCC effectiveness of the design of steel bridges. Based on the results of the numerical investigation, the LCC-effective optimum design of steel bridges based on the proposed LCC model was found to lead to a more rational, economical, and safer design compared with the initial cost-optimum design and the conventional code-based design.