• Title/Summary/Keyword: renewable energy from the sea

Search Result 70, Processing Time 0.032 seconds

Energy Saving Strategies for Ice Rink using Sea-Water Heat Source Cooling System (해수열원을 이용한 빙상경기장의 에너지절약 방안에 관한 연구)

  • Kim, Samuel;Park, Jin-Young;Park, Jae-Hong
    • Journal of the Korean Solar Energy Society
    • /
    • v.34 no.2
    • /
    • pp.53-59
    • /
    • 2014
  • Ice Rink is energy intensive building type. Concern of energy saving from buildings is one of very important issues nowadays. New and renewable energy sources for buildings are especially important when we concern about energy supply for buildings. Among new and renewable energy sources, use of seawater for heating and cooling is an emerging issue for energy conscious building design. The options of energy use from sea water heat sources are using deep sea water for direct cooling with heat exchange facilities, and using surface layer water with heat pump systems. In this study, energy consumptions for an Ice Rink building are analyzed according to the heat sources of air-conditioning systems; existing system and sea water heat source system, in a coastal city, Kangnung. The location of the city Kangnung is good for using both deep sea water which is constant temperature throughout the year less than $2^{\circ}C$, and surface layer water which should be accompanied with heat pump systems. The result shows that using sea water from 200m and 30m under sea lever can save annual energy consumption about 33% of original system and about 10% of that using seawater from 0m depth. Annual energy consumption is similar between the systems with seawater from 200m and 30m. Although the amount of energy saving in summer of the system with 200m depth is higher than that with 30m depth, the requirement of energy in winter of the system with 200m depth is bigger than that with 30m depth.

Algae Based Energy Materials (해조류를 이용한 친환경 에너지소재)

  • Han, Seong-Ok
    • New & Renewable Energy
    • /
    • v.4 no.4
    • /
    • pp.50-55
    • /
    • 2008
  • Recently, sea algae cultivation as carbon sink and carbon dioxide fixation have been considered. Also, various researches on bioenergy derived from sea algae and the utilization of fibers, saccharide, and lipid of sea algae have been performing. Till now, algae fibers has been used for manufacturing of paper and reinforcing of polymer composites and the extracts of sea algae are used for cosmetics, pharmaceutical materials and food such as agar. Especially, algae fiber has so similar properties to cellulose in terms of crystallinity and functional groups that it can be utilized as reinforcements of biocomposites. Biocomposites as alternatives of glass fiber reinforced polymer composites are environmentally friendly polymer composites reinforced with natural fibers and are actively applying to the automobiles and construction industries. In this paper, characteristics of algae fiber and biocomposites reinforced with algae fiber as environmentally friendly energy materials have been introduced.

  • PDF

An Overview of Marine Renewable Energy (해양 신재생에너지의 고찰)

  • Kim, Young C.
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.25 no.6
    • /
    • pp.433-438
    • /
    • 2013
  • With the prospect of an increasing shortage of energy resources, there has been a growing interest in renewable alternative sources of energy. An increasing effort is being directed towards resolving the problems of extracting energy from the world's oceans, as they represent a vast potential source of renewable energy. This paper summarizes the extraction and conversion techniques of the ocean's energy resources, namely, energy derived from the ocean waves, tides, thermal gradients, and currents. For each energy extraction and conversion technique, case studies are discussed.

A Study on the Application of the Solar Energy Seasonal Storage System Using Sea water Heat Source in the Buildings (해수냉열원을 이용한 태양열계간축열시스템의 건물냉방 적용에 관한 연구)

  • Kim, Myung-Rae;Yoon, Jae-Ock
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.56-61
    • /
    • 2009
  • Paradigm depending only on fossil fuel for building heat source is rapidly changing. Accelerating the change, as it has been known, is obligation for reducing green house gas coming from use of fossil fuel, i.e. reaction to United Nations Framework Convention on Climate Change. In addition, factors such as high oil price, unstable supply, weapon of petroleum and oil peak, by replacing fossil fuel, contributes to advance of environmental friendly renewable energy which can be continuously reusable. Therefore, current new energy policies, beyond enhancing effectiveness of heat using equipments, are to make best efforts for national competitiveness. Our country supports 11 areas for new renewable energy including sun light, solar heat and wind power. Among those areas, ocean thermal energy specifies tidal power generation using tide of sea, wave and temperature differences, wave power generation and thermal power generation. But heat use of heat source from sea water itself has been excluded as non-utilized energy. In the future, sea water heat source which has not been used so far will be required to be specified as new renewable energy. This research is to survey local heating system in Europe using sea water, central solar heating plants, seasonal thermal energy store and to analyze large scale central solar heating plants in German. Seasonal thermal energy store necessarily need to be equipped with large scale thermal energy store. Currently operating central solar heating system is a effective method which significantly enhances sharing rate of solar heat in a way that stores excessive heat generating in summer and then replenish insufficient heat for winter. Construction cost for this system is primarily dependent on large scale seasonal heat store and this high priced heat store merely plays its role once per year. Since our country is faced with 3 directional sea, active research and development for using sea water heat as cooling and heating heat source is required for seashore villages and building units. This research suggests how to utilize new energy in a way that stores cooling heat of sea water into seasonal thermal energy store when temperature of sea water is its lowest temperature in February based on West Sea and then uses it as cooling heat source when cooling is necessary. Since this method utilizes seasonal thermal energy store from existing central solar heating plant for heating and cooling purpose respectively twice per year maximizing energy efficiency by achieving 2 seasonal thermal energy store, active research and development is necessarily required for the future.

  • PDF

Study on Establishment of a Wind Map of the Korean Peninsula (I. Establishment of a Synoptic Wind Map Using Remote-Sensing Data) (한반도 바람지도 구축에 관한 연구 (I. 원격탐사자료에 의한 종관 바람지도 구축))

  • Kim Hyungoo;Choi Jaeou;Lee Hwawoon;Jung Woosik
    • New & Renewable Energy
    • /
    • v.1 no.1 s.1
    • /
    • pp.44-53
    • /
    • 2005
  • To understand general status of the national wind environment and to distinguish potential areas to be developed as a largescale wind farm, a synoptic wind map of the Korean Peninsula is established by processing remote sensing data of the satellite, NASA QuikSCAT which Is deployed for the SeaWinds Project since 1999. According to the validation results obtained by comparing with the measurement data of marine buoys of KMA(Korea Meteorological Administration), the cross-correlation factor Is greatly Improved up to 0.87 by blending the sea-surface dat3 of QuikSCAT with NCEP/NCAR CDAS data. It is found from the established synoptic wind map that the wind speed in winter is prominent temporally and the South Sea shows high energy density up to the wind class 6 spatially. The reason is deduced that the northwest winds through the yellow Sea and the northeast winds through the East Sea derived by the low-pressure developed in Japan are accelerated passing through the Korea Channel and formed high wind energy region in the South Sea; the same trends are confirmed by the statistical analysis of meteorological observation data of KMA.

  • PDF

A study on the power plant system combined with PEM fuel cell and the wasted hydrogen from the sea water electrolyzer of nuclear power plants (원자력 발전소의 해수전해설비 폐수소를 활용한 PEM 연료전지 발전 시스템에 관한 연구)

  • Choi, Jongwon;Lee, Juhyung;Cha, Sukwon;Kim, Minsoo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.124.2-124.2
    • /
    • 2010
  • Generally, a coolant of the nuclear power plant is manufactured by electrolyzing the sea water near the plant for making the sodium hypochlorite(NaOCl), which is used for sterilizing the bacteria and the shellfishes sticking to the drains or the pumps at the outlet of the cooling system due to $8-10^{\circ}C$ warmer temperature than the inlet sea water. During manufacturing the sodium hypochlorite, the hydrogen with the high purity is also produced at the anode side of the electrolyzer. This paper describes a novel power plant system combined with the polymer electrolyte membrane(PEM) fuel cell, the wasted hydrogen from the sea water electrolyzer and the wasted heat of the nuclear power plant. The present status over the exhausted hydrogen at twenty nuclear power plants in Korea was investigated in this study, from which an available power generation is estimated. Furthermore, the economic feasibility of the PEM fuel cell power plant is also evaluated by a current regulations over the power production and exchange using a renewable energy shown in Korea Power Exchange(KRX).

  • PDF

The Estimaion of Wind Energy Resources through out the QuikSCAT Data (위성 관측 자료를 이용한 서해 해상 풍력자원 평가)

  • Jang, Jea-Kyung;Yu, Byoung-Min;Ryu, Ki-Wahn;Lee, Jun-Shin
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.486-490
    • /
    • 2009
  • In order to investigate the offshore wind resources, the "QuikSCAT Level 3" data by the QuikSCAT satellite was analyzed from Jan 2000 to Dec 2008. QuikSCAT satellite is a specialized device for a microwave scatterometer that measures near-surface wind speed and direction under all weather and cloud conditions. Wind speed measured at 10 m above from the sea surface as extrapolated to the hub height by using the power law model. It has been found that the high wind energy prevailing in the south sea and the east sea of the Korean peninsula. From the limitation of seawater depth for piling the tower and archipelagic environment around the south sea, the west and the south-west sea are favorable to construct the large scale wind farm. Wind map and monthly variation of wind speed are investigate at the positions.

  • PDF

Improving Policies and Regulations for Environmental-friendly Ocean Renewable Energy Development in Korea (해양에너지 개발사업의 친환경적 개발을 위한 정책 및 제도개선 방안)

  • Park, Jeong-Il;Kim, Taeyun
    • Journal of Environmental Impact Assessment
    • /
    • v.23 no.4
    • /
    • pp.237-250
    • /
    • 2014
  • A wide range of projects for ocean renewable energy are currently in development around the world and ocean energy industries continue to receive significant support from their governments. Surrounded by sea on three sides, Korea has potentially abundant renewable ocean energy resources, which include tidal current, tidal range, offshore wind power, osmotic pressure and ocean thermal energy. Numerous ocean renewable energy projects has been developed in Korea. Nevertheless, there are some concerns that those developments often select an environmentally unsuitable location and/or there are very few existing information on those environmental effects. The purpose of this study is to improve supporting policies and regulation systems of ocean renewable energy development in Korea by reviewing and compiling government policies and environmental assessment systems related to ocean renewable energy development around the world. The study suggests several policy implications for its environmental-friendly development in Korea, including requirements of strategic environmental assessment for proactive and environmentally suitable site selection of ocean renewable energy development and continuous post-development environmental monitoring, and so on.

Response Analysis of MW-Class Floating Offshore Wind Power System using International Standard IEC61400-3-2

  • Yu, Youngjae;Shin, Hyunkyoung
    • Journal of Ocean Engineering and Technology
    • /
    • v.34 no.6
    • /
    • pp.454-460
    • /
    • 2020
  • In 2019, the Korean government announced the 3rd Basic Plan for Energy, which included expanding the rate of renewable energy generation by 30-40% by 2040. Hence, offshore wind power generation, which is relatively easy to construct in large areas, should be considered. The East Sea coast of Korea is a sea area where the depth reaches 50 m, which is deeper than the west coast, even though it is only 2.5 km away from the coastline. Therefore, for offshore wind power projects on the East Sea coast, a floating offshore wind power should be considered instead of a fixed one. In this study, a response analysis was performed by applying the analytical conditions of IEC61400-3-2 for the design of floating offshore wind power generation systems. In the newly revised IEC61400-3-2 international standard, design load cases to be considered in floating offshore wind power systems are specified. The upper structure applied to the numerical analysis was a 5-MW-class wind generator developed by the National Renewable Energy Laboratory (NREL), and the marine environment conditions required for the analysis were based on the Ulsan Meteorological Buoy data from the Korea Meteorological Administration. The FAST v8 developed by NREL was used in the coupled analysis. From the simulation, the maximum response of the six degrees-of-freedom motion and the maximum load response of the joint part were compared. Additionally, redundancy was verified under abnormal conditions. The results indicate that the platform has a maximum displacement radius of approximately 40 m under an extreme sea state, and when one mooring line is broken, this distance increased to approximately 565 m. In conclusion, redundancy should be verified to determine the design of floating offshore wind farms or the arrangement of mooring systems.

Study on Effects of Seawater Fouling on a Plate-Frame Heat Exchanger (해수 파울링이 판형 열교환기 성능에 미치는 영향에 대한 고찰)

  • Heo, Jaehyeok;Lee, Dong-Won;Kim, Min-Hwi;Baik, Wonkeun;Yun, Rin
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.29 no.8
    • /
    • pp.391-400
    • /
    • 2017
  • Understanding of seawater fouling characteristics is critical in designing a heat exchanger adapted in an effluent utilization system for a power plant. We reviewed three types of fouling mechanisms of general, biological, and crystallizing for a plate-frame heat exchanger, to be used for heat exchanging with heated effluent from a power plant. Also, mathematical models for each type of seawater fouling were suggested. Actual thermal resistance calculated from seawater fouling models were compared and implemented in designing a plate-frame heat exchanger. The bio-fouling model revealed the largest thermal resistance and the highest number of plates for a plate-frame heat exchanger under the same heat load. Overall heat transfer coefficient and pressure drop of a plate-frame heat exchanger under fouling conditions was lower by 58 percent and higher by 2.85 times than those under clean conditions, respectively.