• Title/Summary/Keyword: removal rate of diazinon

Search Result 9, Processing Time 0.034 seconds

Removal of Diazinon and Heavy Metals in Water by Benthic Macroinvertebrate (저서성 대형무척추동물을 이용한 수중의 다이아지논 및 중금속 제거)

  • Lee, Hwa-Sung;Ryoo, Keon-Sang
    • Journal of Environmental Science International
    • /
    • v.21 no.1
    • /
    • pp.57-67
    • /
    • 2012
  • The midge samples were undertaken at three streams, representing different surrounding environments, to investigate the contaminant exposure of midge. The content of heavy metals in midge collected in Singil stream were generally higher as a result of input to the industrial effluents with respect to other streams. Adsorption experiments were done to evaluate the possibility of removing contaminants from water with midge. Diazinon and heavy metals were contaminant target compounds in this study. The removal rate of diazinon in water by midge was 60-75%. In the case of Cu, the removal rate was reached around 90% at the lower initial concentration of 1.87 and 0.81 ppm rather than 4.25 ppm. The reduction of concentration of Cr and Cd according to the lapse of time was similar to the Cu, but their removal rates were shown 50% and 60-74%, respectively. The removal rate of Zn by midge represented relatively high level within the experimental condition. No change in concentration of Cr and As with time were occurred at all experimental conditions. It accounts for the fact that the reduction of Cr and As could not be achieved through the adsorption process, using midge.

Removal of Diazinon Using Recombinant Biocatalyst (재조합 생촉매를 이용한 Diazinon 제거)

  • Choi, Suk Soon;Seo, Sang Hwan;Kang, Dong Gyun;Cha, Hyung Joon;Kwon, Inchan
    • Applied Chemistry for Engineering
    • /
    • v.22 no.5
    • /
    • pp.486-489
    • /
    • 2011
  • In the present work, diazinon which is known as nondegradable and environmental toxic material was efficiently treated by the cell surface-displayed organophosphorus hydrolase (OPH) biocatalyst. The culture temperature of $25^{\circ}C$ culture temperature and the addition of 0.2 mM ethylenediamine tetraacetate (EDTA) were effective conditions for the production of recombinant OPH in Escherichia coli. 25 and 50 ppm diazinon were treated with removal rate of 4.5 and $7.2mg/g{\cdot}min$, respectively and with all over 90% removal efficiencies using recombinant cell lysates through ultrasonication disruption process. Thus, these experimental results could be utilized in environmental friendly biological treatment system for toxic chemicals such as diazinon.

A Study on Removal of Pesticide Residues (Diazinon, Diniconazole, Dimethomorph) during Making and Fermentation of Chonggak Kimchi (총각김치의 제조과정 중 잔류농약(diazinon, diniconazole, dimethomorph)의 제거율 연구)

  • Lee, Yun-Mi;Oh, Moon-Seog;Jeon, Jong-sup;Lee, Seong-Bong;Kim, Han-Taek;Kang, Hyang-Ri;Lee, Hyo-Kyung;Son, Ji-Hee;Lee, Byoung-Hoon;Lee, Pil-Seok;Kim, Ji-Won;Choi, Ok-Kyung
    • Journal of Food Hygiene and Safety
    • /
    • v.35 no.2
    • /
    • pp.152-161
    • /
    • 2020
  • This study determined the removal ofrates for three types of pesticides which were spiked from Chonggak radish during the preparation of chonggak kimchi. When Chonggak radish (leaves) were brined with 10% salt solution and rinsed with water, the removal rate of the three pesticides was 43.8%, 41.9% and 89.8% for diazinon, diniconazole and dimethomorph, respectively. When Chonggak kimchi (leaves) were prepared and fermented for 4 weeks at 4℃, the removal rate of the three pesticides was 82.4%, 77.2% and 98.9% for diazinon, diniconazole and dimethomorph, respectively. Pesticide residues in chonggak radish (roots) were removed by up to 54.7-85.1% of initial concentration through brining and washing. During the fermentation of chonggak kimchi (roots) for 4 weeks at 4℃, the amount of pesticide residues was decreased by 94.0%, 91.8% and 90.0% of initial concentration for diazinon, diniconazole and dimethomorph, respectively. The highest relative removal rate by percentage for the three pesticides asreached 66.5% by salting chonggak radish (leaves). On the other hand, the highest relative removal rate by percentage of pesticides was shown during fermentation, reaching 51.8% and 55.8% for diazinon and diniconazole, respectively, in Chonggak kimchi (roots). As a result of examining the differences ofbetween the three pesticide removal rates rates according to temperature while fermentedduring fermentation of Chonggak kimchi with three pesticides for 4 weeks at 0℃ and 4℃, diazinon pesticide removal was has a high pesticide removal rate of 2.7-10.8% from fermented Chonggak kimchi (roots) at 4℃ compared to 0℃. In the other pesticides, the difference in removal rate of the pesticideresidual pesticides residues by aging temperature was found to be insignificant.

Removal Effects of Organic-Phosphorus Pesticide Residue in lettuce by washing methods (세척방법에 따른 상추중 유기인 잔류농약의 제거효과)

  • Ko, Bok-Sil;Jeon, Tae-Hwan;Jung, Kyu-Saeng;Lee, Sung-Kook
    • Journal of agricultural medicine and community health
    • /
    • v.21 no.2
    • /
    • pp.159-171
    • /
    • 1996
  • It is investigated to determine the removal efficiency of organic - phosphorus insecticide residues in lettuce by washing processes, the 5 washing solution (stagnant tap water, flowing tap water, alkaline solution, acidic solution) were used with the washing time(10, 30, 50sec) and frequencies(1, 2, 3 washing, 2 rinsing). The removal efficiency of residual pesticides by 5 washing methods was increased on the more washing time and frequency, and also was the highest on the 3 times washing for each 50 sec. The removal rate with stagnant tap water was 33.7% of Diazinon, 45.7% of Dimethoate and 24.6% of Fenitrothion, but 29.4% of Diazinon, 37.7% of Dimethoate and 24.5% of Fenitrothion with flowing tap water. Therefore, the former was significantly higher effective than the latter one. The removal rate of residual pesticides with alkaline solution showed 32.1% of Diazinon, 49.5% of Dimethoate and 29.9% of Fenitrothion, and 30.4% of Diazinon, 36.4% of Dimethoate and 21.0% of Fenitrothion with acidic solution. The washing efficiency of neutral detergent showed the most effective result than others with 47.1% of Diazinon, 58.0% of Dimethoate and 39.5% of Fenitrothion. Consequently, it's appeared that the neural detergent washing was the most effective method on the 3 times washing for each 50 sec.

  • PDF

The study for photodegradation of diazinon using $TiO_2$ photocatalyst ($TiO_2$ 광촉매를 처리한 Diazinon의 광분해에 관한 연구)

  • Ryu, Seong-Pil;O, Yun-Geun
    • Journal of Environmental Science International
    • /
    • v.9 no.2
    • /
    • pp.151-158
    • /
    • 2000
  • Considerable interest has been shown in recent years towards utilizing $TiO_2$ particles as a photocatalyst in the degradation of harmful organic contaminants. In this study, photocatalytic degradation of diazinon which is extensively used as a pesticide in the agriculture field, has been investigated with UV-illuminated $TiO_2$ weight, UV wavelength, pH of the solution. Photodegradation rate increased with decreasing initial concentration of diazinon and with increasing pH of the solution. Photodegradation rate increased with increasing $TiO_2$ weight, but was nearly the same at $TiO_2$ weight of 1g/$\ell$, 2 g/$\ell$, i.e., for initial diazinon concentratin of 5 mg/$\ell$. UV wavelength affecting on the degradation rate of diazinon decreased in the order of 254 nm>312 nm> 365 nm. For $TiO_2$ weight of 1 g/$\ell$and initial diazinon concentration of 5 mg/$\ell$, the photodegradation removal of diazinon was 100% after 130 min in the case of 254 nm, but 95% in the case of 312 nm, and 84% in the case of 365nm, after 180 min. The photodegradation of diazinon followed a first order or a pseudo - first order reaction rate. For initial diazinon concentration of 5 mg/$\ell$, the rate constants(k) in UV and $TiO_2$(1 g/$\ell$)/UV system were $0.006 min^{-1} and 0.0252 min^{-1} at 254 nm, 0.0055 min^{-1} and 0.0104 min^{-1} at 312 nm, and 0.004 min^{-1}$ at 365 nm respectively.

  • PDF

Photodegradation of Organophosphorous Pesticides using TiO2 Photocatalyst Coated on Glass Plates in Circular Reactor (순환식 반응기에서 유리판에 코팅된 TiO2 광촉매를 이용한 유기인계 농약의 광분해)

  • 류성필;오윤근
    • Journal of Environmental Science International
    • /
    • v.11 no.6
    • /
    • pp.589-596
    • /
    • 2002
  • Photocatalytic degradation of chlorpyrifos and diazinon, which are extensively used as an organophosphorous pesticide in the agriculture field, has been investigated with UV-radiated TiO$_2$ in aqueous phase. Photodegradation rate was increased with increasing pH of the solution. The removal efficiencies of chlorpyrifos and diazinon were 100% after 200 min in pH 9. Photodegradation followed a pseudo-first-order reaction. The rate constants of chlorpyrifos and diazinon were 0.0160min$\^$-1/ and 0.0180min$\^$-1/, respectively. NO$_3$$\^$-/, PO$_4$$\^$3-/, SO$_4$$\^$2-/ and Cl$\^$-/ were found as end products on the photocatalytic degradation of chlorpyrifos and diazinon with TiO$_2$/UV.

Organophosphorus pesticides removal effect in rice and Korean Cabbages by Washing and Coo]ling (쌀과 배추의 세척 및 가열에 의한 유기인계 농약의 제거 효과)

  • 제갈성아;한영선;김성애
    • Korean journal of food and cookery science
    • /
    • v.16 no.5
    • /
    • pp.410-415
    • /
    • 2000
  • This study was performed to study tile organophosphorus pesticides residues removal effect of rice and Korean cabbage. Four organophosphorus pesticides(EPN, diazinon, fenithrithion, phenthoate) were artificially added to rice and Korean cabbage. Then they were washed with water and cooked differently to analyze the amount of pesticides residues reduced. The result of the study were as following; 1. The removal rate of pesticides residue on rice was 15.5∼35.4% an[ the amount of washing water was more influential in removal rate than number of washing. 2. The removal rate of pesticides residues through cooking processes after rice washing was 72.1∼77.8%. 3. The removal rate of pesticides residues through washing and cooking processes on the Korean cabbage were 18.4∼41.0%, 22.8∼92.7%. 4. As the amount of washing water of Korean cabbage increase, pesticides removal effect was higher. 5. Squeezing out the washed water from the cabbage increased pesticides removal rate.

  • PDF

Studies on the Residues of Diazinon, Fenitrothion, and EPN in apple and removal of Pesticide Residues by Storing, Peeling and Washing (사과 중 Diazinon, Fenitrothion, EPN의 잔류량과 저장, 각피 및 세척에 의한 잔류농약 제거에 관한 연구)

  • 김순희;정규철
    • Journal of environmental and Sanitary engineering
    • /
    • v.6 no.2
    • /
    • pp.89-108
    • /
    • 1991
  • Organophosphorus pesticide residues such as Diazinon, Fenitrothion and EPN in apple and effect of storage peeling and washing on removal of the residues from apple soaked in 3 kinds of pesticides solutions for 20 seconds were studed with gas chromatography-nitrogen phosphorus detecter(GC-NPD). Result obtained are as follows : 1) Average concentrations of DiaEinon, Fenitrothion, and EPN detected in apple of control group were 0.022, 0.007 and 0.008 ppm respectively. 2) Decreasing rates of Diazinon on 7 th, 14 th, 21 st, 28 th, and 35 th day after soaking apple on the pesticide solution were 41.3% , 68.6% , 87.0%, 96.9% and 99.5% respectively. In case of Fenitrothion were 46.9%, 66.3%, 84.9%, 93.2% and 97.3% and EPN were 45.7 %, 76.2%, 85.4%, 95.7% and 99.4% respectively. 3) The removal rate of Diazinon, Fenitrothion and EPN by washing with water alone were 93.7%, 70.6% and 51.5% respectively, and 97.1% , 78.4% ailed 76.5% by washing with 0.2% detergent solution respectively. The results obtained in this study have show that 3 kinds of pesticides detected in app- les were below the Korean standard for residual pesticides and pesticides contaminated in apples were decreased in considerable degree by washing with water and 2% detergent solution and removed almost completely after storage for 35 days (5 weeks). Therefore, it would be concluded that washing and peeling will be the most effective way for safely because more than 90% of pesticide exist in peel.

  • PDF

Effect of Aqueous Chlorine Dioxide Treatment on the Decomposition of Pesticide Residues (이산화염소수 처리에 의한 잔류농약 분해 효과)

  • Kim, Kyu-Ri;Song, Kyung-Bin
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.38 no.5
    • /
    • pp.601-604
    • /
    • 2009
  • This study was conducted to examine the effect of aqueous chlorine dioxide treatment as a washing method on removal of pesticide residues. Three pesticides of chlorpyrifos, diazinon, and metalaxyl, which are commonly used in vegetable crops, were treated with 10, 50, and 100 ppm of aqueous chlorine dioxide and decomposition of the pesticides was determined using gas chromatography. Three pesticides used in this study were decomposed by aqueous chlorine dioxide treatment and removal rate was proportional to treatment time as well as concentration of aqueous chlorine dioxide. In particular, 100 ppm of aqueous chlorine dioxide treatment decreased the pesticides efficiently. In addition, lettuce was treated by dipping in distilled water and 100 ppm aqueous chlorine dioxide, respectively, and was compared regarding removal efficiency of the pesticides. The results revealed that washing with 100 ppm aqueous chlorine dioxide for 10 min was the most effective for removing the pesticides. These results suggest that aqueous chlorine dioxide can be used as a washing method of fresh produce to remove the residual of pesticides.