• Title/Summary/Keyword: removal of column

Search Result 544, Processing Time 0.027 seconds

Nitrogen Removal Via Sediment Denitrification and Its Seasonal Variations in Major Estuaries of South Coast of Korean Peninsula (남해안 주요 하구 갯벌 퇴적물의 탈질소화를 통한 질소 영양염 제거)

  • Heo, Nak-Won;Lee, Ji-Young;Choi, Jae-Ung;An, Soon-Mo
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.16 no.2
    • /
    • pp.81-96
    • /
    • 2011
  • Sediment oxygen demand(SOD) and denitrification rates were measured in four major estuaries(Suncheon Bay, Seomjin river estuary, Goseong stream estuary and Masan Bay) in south coast of Korean peninsula from March of 2009 to May 2010 to estimate organic matter cleaning capacity. SOD was estimated from the temporal dissolved oxygen concentration change and isotopic pairing technique was employed to measure denitrification. Sediment oxygen demand(SOD) was ranged from -5.1 to 24.6 mmole $O_2m^{-2}d^{-1}$ and denitrification rate was ranged from 0.0 to 3.9 mmole $N_2m^{-2}d^{-1}$in the study area. SOD was the highest in Masan Bay(-2.2 to 19.2, average = 10.2 mmole $O_2m^{-2}d^{-1}$) and Suncheon, Goseong, Tae-an and Seomjin followed. Denitrification was also the highest in Masn Bay(0.0 to 3.9, average = 1.0 mmole $N_2m^{-2}d^{-1}$) and Goseong, Seomjin, Suncheon and Taean followed. The effect of benthic photosynthesis by microphytobenthos on denitrification was evident in some season of Tae-an, Seomjin, and Masn Bay. The increased oxygen level produced by photosynthesis stimulated nitrification without severe adverse effect on denitrification and, as a result, coupled nitrification and denitrification was enhanced in these areas. A difference of seasonal patterns of denitrification at each site depended on relative importance of denitrification on different nitrate source($D_w$: nitrate from water column and $D_n$: nitrated produced during nitrification). Denitrification was maximum during spring in Goseong, Suncheon and Masan Bay. On the contrary, denitrification was the highest during summer in Tae-an and Seomjin estuary.

Effects of Activated Carbon Types and Service Life on Removal of Odorous Compounds: Geosmin and 2-MIB (활성탄 재질과 사용연수에 따른 Geosmin과 MIB 흡착특성)

  • Lee, Hwa-Ja;Son, Hee-Jong;Lee, Chul-Woo;Bae, Sang-Dae;Kang, Lim-Seok
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.4
    • /
    • pp.404-411
    • /
    • 2007
  • Adsorption performance of odorous compounds such as geosmin and 2-MIB on granular activated carbon were evaluated in this study. The coal-based activated carbon was found more effective than other carbons in adsorption of geosmin and 2-MIB. The wood-based virgin activated carbon was less effective than coconut- and coal-based carbon in adsorption nevertheless having larger pore volume and specific surface area than others carbons. The maximum adsorption capacity(X/M) of coal-based activated carbon for geosmin and 2-MIB was $1.2\sim1.9$ and $2.1\sim2.6$ times larger than coconut- and wood-based virgin activated carbon, respectively. Carbon usage rate (CUR) of coal-, coconut- and wood-based virgin activated carbons for geosmin and 2-MIB were 1.72 and 1.44 g/day, 1.72 and 2.05 g/day and 2.12 and 1.90 g/day, respectively. In the evaluation of adsorption isotherm of geosmin and 2-MIB for coal-, coconut- and wood-based virgin activated carbons, k value of 2-MIB was lower than geosmin, It menas 2-MIB is more difficult to remove by activated carbon adsorption than geosmin. The relationship of max. adsorption versus total pore volume of coconut- and wood-based virgin and used activated carbon for geosmin and 2-MIB were $y=264,459\times-79,047(R^2=0.95)$, $y=319,650\times-101,762(R^2=0.93)$.

Surface Tension-Water Saturation Relationship as the Function of Soil Particle Size and Aquifer Depth During Groundwater Air Sparging (대수층 폭기공정에서 토양입경 및 지하수 깊이에 따른 표면장력과 함수율의 상관관계)

  • Kim, Heon-Ki;Kwon, Han-Joon
    • Journal of Soil and Groundwater Environment
    • /
    • v.14 no.6
    • /
    • pp.65-70
    • /
    • 2009
  • Reduction of groundwater surface tension prior to air sparging (SEAS, surfactant-enhanced air sparging) was known to increase air saturation in the aquifer under influence, possibly enhancing the removal rates of volatile contaminants. Although SEAS was known to be efficient for increasing air saturation, little information is available for different hydrogeological settings including soil particle sizes and the depth of aquifer. We investigated water saturations in the sparging influence zone during SEAS using one-dimensional column packed with sands of different particle sizes and different aquifer depths. An anionic surfactant was used to suppress the surface tension of water. Two different sands were used; the air entry pressures of the sands were measured to be $15.0\;cmH_2O$, and $36.3\;cmH_2O$, respectively. No significant difference was observed in the water saturation-surface tension relationship for sands with different particle sizes. As the surface tension decreased, the water saturation decreased to a lowest point and then it increased with further decrease in the surface tension. Both sands reached their lowest water saturations when the surface tension was set approximately at 42 dyne/cm. SEAS was conducted at three different aquifer depths; 41 cm, 81 cm, and 160 cm. Water saturation-surface tension relationship was consistent regardless of the aquifer depth. The size of sparging influence zone during SEAS, measured using two-dimensional model, was found to be similar to the changes in air saturation, measured using one-dimensional model. Considering diverse hydrogeological settings where SEAS to be applied, the results here may provide useful information for designing SEAS process.

Ion-Exchange Chromatography of Some Toxic Heavy Metal Ions (인체유해 중금속이온의 이온교환 크로마토그라피)

  • Lee, Dai Woon;Yu, Euy Kyung
    • 한국해양학회지
    • /
    • v.10 no.1
    • /
    • pp.33-40
    • /
    • 1975
  • The ion exchange sorption and elution behavior of toxic heavy metal ions, such as Hg(II) and Zn(II), have been studied in aqueous and methanolic media of MCl (M: K, Na and NH$\_$4/). The ion exchange resins studied are Dowex 1-X8, Cl$\^$-/ (50-100 or 200-400 mesh) and Dowex 50W-X8, M$\^$+/ form (M: K, Na, NH$\_$4/ and H). the sorption and elution of metal ion on the resin is largely due to the formation of the anionic chlororocomplex of metal ion. The addition of methanol in the medium contributes markedly to the distribution data. In order to apply this work for the treatment of polluted sea water with toxic heavy metal ions, removal experiment of the metal ions from the synthetic sample solution was investigated.

  • PDF