• Title/Summary/Keyword: removal efficiency evaluation

Search Result 318, Processing Time 0.025 seconds

RSM-based MOALO optimization and cutting inserts evaluation in dry turning of AISI 4140 steel

  • Hamadi, Billel;Yallese, Mohamed Athmane;Boulanouar, Lakhdar;Nouioua, Mourad;Hammoudi, Abderazek
    • Structural Engineering and Mechanics
    • /
    • v.84 no.1
    • /
    • pp.17-33
    • /
    • 2022
  • An experimental study is carried out to investigate the performance of the cutting tool regarding the insert wear, surface roughness, cutting forces, cutting power and material removal rate of three coated carbides GC2015 (TiCN-Al2O3-TiN), GC4215 (Al2O3-Ti(C,N)) and GC1015 (TiN) during the dry turning of AISI4140 steel. For this purpose, a Taguchi design (L9) was adopted for the planning of the experiments, the effects of cutting parameters on the surface roughness (Ra), tangential cutting force (Fz), the cutting power (Pc) and the material removal rate (MRR) were studied using analysis of variance (ANOVA), the response surface methodology (RSM) was used for mathematical modeling, with which linear mathematical models were developed for forecasting of Ra, Fz, Pc and MRR as a function of cutting parameters (Vc, f, and ap). Then, Multi-Objective Ant Lion Optimizer (MOALO) has been implemented for multi-objective optimization which allows manufacturers to enhance the production performances of the machined parts. Furthermore, in order to characterize and quantify the flank wear of the tested tools, some machining experiments were performed for 5 minutes of turning under a depth of 0.5 mm, a feed rate of 0.08 mm/rev, and a cutting speed of 350 m/min. The wear results led to a ratio (VB-GC4215/VB-GC2015) of 2.03 and (VB-GC1015/VB-GC2015) of 4.43, thus demonstrating the efficiency of the cutting insert GC2015. Moreover, SEM analysis shows the main wear mechanisms represented by abrasion, adhesion and chipping.

Evaluation of Efficiency of SVE from Lab-scale Model Tests and Numerical Analysis (실내모형시험과 수치해석을 통한 SVE의 효율성 평가)

  • Suk, Heejun;Seo, Min Woo;Ko, Kyung-Seok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.1B
    • /
    • pp.137-147
    • /
    • 2008
  • Soil Vapor Extraction (SVE) has been extensively used to remove volatile organic compounds (VOCs) from the vadoze zone. In order to investigate the removal mechanism during SVE operation, laboratory modeling experiments were carried out and tailing effect could be observed in later stage of the experiment. Tailing effect means that removal rate of contaminants gets significantly to decrease in later stage of SVE operation. Also, mathematical model simulating the tailing effect was used, which considers rate-limited diffusion in a water film during mass transfer among gas, liquid, and solid phases. Measurement data obtained through the experiment was used as input data of the numerical analyses. Sensitivity analysis was performed to examine the effect of each parameter on required time to reach final target concentration. Finally, it was found that the concentration in the soil phase decreased significantly with a liquid and gas diffusion coefficient larger, actual path length shorter, and water saturation smaller.

Research on Design Capacity Evaluation of Low Impact Development according to Design Criteria (저영향개발 시설 설계 기준에 따른 용량 평가 방법 연구)

  • Im, Jiyeol;Gil, Kyungik
    • Journal of Wetlands Research
    • /
    • v.24 no.1
    • /
    • pp.59-67
    • /
    • 2022
  • The interest in LID facilities is increasing worldwide for recovery of natural water cycle system to destroy by urbanization. However, problems are raised when installation of LID because comprehensive analysis about design capacity adequacy of LID facilities was not conducted completely. In this research, removal efficiency and design volume adequacy of LID facilities were analyzed based on rainfall monitoring data in four LID facilities(Vegetated Swale, Vegetative Filter Strip, Bio-Retention and Permeable Pavement). As a result, group of LID facility designed on WQV was shown higher flow(37%) and pollutants(TSS, BOD, TN and TP) removal efficiencies(20 ~ 37%) than group of LID facility designed on WQF. SA/CA graph was drawn for evaluation of design volume adequacy based on rainfall monitoring data. In this SA/CA graph, coefficient of determination show over 0.5 in all parameter, especially, Flow and TP were show over 0.95. And, 'SA/CA & L/CA' graph considering difference of structure mechanism in LID facility suggested in this research was confirmed that improved coefficient of determination in flow, TSS and TP than SA/CA graph. According to this research results, feasibility of applying 'SA/CA & L/CA' graph for evaluation of design volume adequacy in LID facility, and it is necessary to follow up research for generalization and normalization.

Removal of ZnO Nanoparticles in Aqueous Phase and Its Ecotoxicity Reduction (수계 내 ZnO 나노입자의 제거 및 생태독성 저감)

  • Kim, Hyunsang;Kim, Younghun;Kim, Younghee;Lee, Sangku
    • Clean Technology
    • /
    • v.22 no.2
    • /
    • pp.89-95
    • /
    • 2016
  • The nanotoxicity of ZnO nanoparticles used in cosmetics and tire industry is one of emerged issues. Herein, the removal of ZnO nanoparticles dispersed in aqueous phase and its ecotoxicity were investigated. In the short-term exposure for fertilized eggs (O. latipes), the deformity was observed at 5 mg L−1 of ZnO nanoparticles in some individuals and delayed hatching of eggs by retarded growth was observed at 10 mg L−1 of ZnO nanoparticles. This result show that ZnO nanoparticles have cytotoxic effect to the organisms lived in water phase. Therefore, herein, the removal of ZnO nanoparticles in aqueous phase by chemical precipitation was investigated. After addition of Na2S and Na2HPO4, the precipitated ZnO was transformed to ZnS and Zn3(PO4)2 particles, respectively. The removal efficiency of ZnO was reached to almost 100% for two cases. In addition, the toxicity tests about ZnS and Zn3(PO4)2 particles showed no acute toxicity for D. magna. This implies that transformation of ZnO to ZnS and Zn3(PO4)2 particles with very low ionization constant might decrease effectively the toxicity of ZnO.

A Study on the Treatment of Dyeing Wastewater Using TiO2/UV (TiO2/UV 산화기술을 이용한 염색폐수처리에 관한 연구)

  • Kim, Jong-kyu;Chung, Ho-jin
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.18 no.3
    • /
    • pp.392-400
    • /
    • 2004
  • This research uses the $TiO_2$/UV process to verify the most suitable condition and possibility to dispose dyeing wastewater that contains pigment and a large amount of pollutants. For this, this research has enforced experiments that compare photo adsorption, photolysis, and photo catalyst oxidation reaction, and also evaluated and analyzed the change of pH and $TiO_2$ dosage, irradiation rates of ultraviolet rays and the dosage change and injection method of $H_2O_2$. According to the results of the dyeing wastewater experiment of storehouse catalyst that uses the new form of $TiO_2$, the photo catalyst oxidation reaction proved to be more effective than photo adsorption and photolysis; 35%, 21% in the case of $TCOD_{cr}$ and 39%, 28% in the case of chromaticity. Taking into consideration the reaction time, amount of photo catalyst reaction and irradiation amount of ultraviolet rays, the decomposition efficiency of pH change proved to be most effective at pH 4. On the whole, the acidity area proved to be effective in dyeing water exclusion than neutral and alkalinity areas. Having evaluated the influence of $TiO_2$ dosage, not only does the decomposition efficiency continuously improve as the $TiO_2$ dosage increases but the shielding effect does not occur also when the $TiO_2$ is at a fixed state. The influence of ultraviolet irradiation amount concluded in the result that as the ultraviolet irradiation amount increases the decomposition efficiency continually increased, but in the case of chromaticity when the irradiation amount was higher than 37.8mW/cm2 the removal efficiency is slowed remarkably. The influence of $H_2O_2$ dosage evaluation reached the results that although the decomposition efficiency increases with the increase of $H_2O_2$ dosage, when above 150mg (total dosage: 1200mg) $H_2O_2$ consumes OH radical itself and reduces the decomposition efficiency. Also in the case of the $H_2O_2$ injection method rather than injecting in the whole amount of $H_2O_2$ (1200mg) needed at the beginning all at once, injecting divided quantities of $H_2O_2$ whenever the electric current density falls below 10mgfl reduces the wases of OH radical due to an excess of $H_2O_2$ and in tum heightens the decomposition efficiency.

Evaluation of Manganese Removal from Acid Mine Drainage by Oxidation and Neutralization Method (산화법과 중화법을 이용한 산성광산배수 내 망간 제거 평가)

  • Kim, Bum-Jun;Ji, Won-Hyun;Ko, Myoung-Soo
    • Economic and Environmental Geology
    • /
    • v.53 no.6
    • /
    • pp.687-694
    • /
    • 2020
  • Two oxidizing agents (KMnO4, H2O2), and one neutralizing agent (NaOH) were applied to evaluate Mn removal in mine drainage. A Mn2+ solution and artificial mine drainage were prepared to identify the Fe2+ influence on Mn2+ removal. The initial concentrations of Mn2+ and Fe2+ were 0.1 mM and 1.0 mM, respectively. The injection amount of oxidizing and neutralizing agents were set to ratios of 0.1, 0.67, 1.0, and 2.0 with respect to the Mn2+ mole concentration. KMnO4 exhibited a higher removal efficiency of Mn2+ than did H2O2 and NaOH, where approximately 90% of Mn2+ was removed by KMnO4. A black MnO2 was precipitated that indicated the oxidation of Mn2+ to Mn4+ after an oxidizing agent was added. In addition, MnO2 (pyrolusite) is a stable precipitate under pH-Eh conditions in the solution. However, relatively low removal ratios (6%) of Mn2+ were observed in the artificial mine drainage that included 1.0 mM of Fe2+. The rapid oxidation tendency of Fe2+ as compared to that of Mn2+ was determined to be the main reason for the low removal ratios of Mn2+. The oxidation of Fe2+ showed a decrease of Fe concentration in solution after injection of the oxidizing and neutralizing agents. In addition, Mn7+ of KMnO4 was reduced to Mn2+ by Fe2+ oxidation. Thus, the concentrations of Mn increased in artificial mine drainage. These results revealed that the oxidation method is more effective than the neutralization method for Mn removal in solution. It should also be mentioned that to achieve the Mn removal in mine drainage, Fe2+ removal must be conducted prior to Mn2+ oxidation.

Performance Evaluation of Biofilter Treating Autothermal Thermophilic Aerobic Digestion Offgas (고온호기성 소화공정 배가스 처리를 위한 바이오필터 성능평가)

  • Bae, Byung-Uk;Choi, Ki-Seung
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.5
    • /
    • pp.732-739
    • /
    • 2010
  • Two combined autothermal thermophilic aerobic digestion (ATAD) and biofilter (BF) systems were operated to treat the piggery wastewater and the ammonia offgas. Experimental results indicated that the organic removal efficiency of ATAD-2, operated with oxygen, was higher than that of ATAD-1, operated with air. The concentration of ammonia in ATAD-2 offgas was higher compared to ATAD-1 offgas, but the total amount of ammonia produced from ATAD-2 was less than that from ATAD-1 due to the lower oxygen flowrate. The ammonia gas produced from both ATAD reactors was successfully removed by the BF. The BF-1, connected with ATAD-1, removed 93% of ammonia at the loading rate of $9.4g\;NH_3-N/m^3/hr$. The BF-2, connected with ATAD-2, removed 95% of ammonia gas at the loading rate of $8.1g\;NH_3-N/m^3/hr$. As the nitrification process continued, pH value of recirculating solution continuously decreased due to the accumulation of nitrate. When the ammonia loading rate was less than $22.7g\;NH_3-N/m^3/h$, the proper replacing cycle of recirculating solution was in the range of 10 to 11 days. Almost 90% of total mass of nitrogen fed into the each BF was confirmed from the mass balance on nitrogen.

Degradation of Volatile Hydrocarbons Using Continuous-Flow Photocatalytic Systems with Enhanced Catalytic Surface Areas

  • Jo, Wan-Kuen;Yang, Sung-Hoon;Shin, Seung-Ho;Yang, Sung-Bong
    • Environmental Engineering Research
    • /
    • v.16 no.2
    • /
    • pp.91-96
    • /
    • 2011
  • Limited information is available on the degradation of volatile hydrocarbons determined via the use of plate-inserted photocatalytic reactors. This has led to the evaluation of surface areas of cylindrical continuous-flow photocatalytic reactors for the degradation of three selected aromatic hydrocarbons. Three types of reactors were prepared: a double cylinder-type, a single cylindrical-type without plates and a single cylindrical-type with inserted glass tubes. According to diffuse reflectance, FTIR and X-ray diffraction (XRD) spectroscopy, the surface characteristics of a coated photocatalyst were very similar to those of raw $TiO_2$, thereby suggesting that the coated photocatalyst exhibited the same photocatalytic activity as the raw $TiO_2$. The photocatalytic degradation efficiencies were significantly or slightly higher for the single cylinder-type reactor than for the double cylinder-type reactor which had a greater catalytic surface area. However, for all target compounds, the degradation efficiencies increased gradually when the number of plates was increased. Accordingly, it was suggested that the surface area being enhanced for the plate-inserted reactor would elevate the photocatalytic degradation efficiency effectively. In addition, this study confirmed that both initial concentrations of target compounds and flow rates were important parameters for the photocatalytic removal mechanism of these plate-inserted photocatalytic reactors.

Evaluation for adsorption of low concentration of indoor $CO_2$ adsorption using zeolite and alkali metal (제올라이트 및 알칼리금속을 이용한 실내용 저농도 $CO_2$ 흡착제의 성능 평가)

  • Lim, Yun-Hui;Lee, Ju-Yeol;Cha, Yu-Joung;Park, Byung-Hyun
    • Journal of the Korean Applied Science and Technology
    • /
    • v.30 no.3
    • /
    • pp.494-503
    • /
    • 2013
  • In this study, $CO_2$ adsorbent was produced for minimizing energy loss due to ventilation within the building. For improved selectivity about low concentration of $CO_2$ in multiple-use facilities, the ball type adsorbent was modified from a commercial zeolite, alumina, alkali metals and activated carbon with mixing LiOH, binder, and $H_2O$. We measured specific surface area, pore characteristic, and crystal structure of the modified adsorbent. Effects of alkalization on the absorptive properties of the adsorbents were investigated. Continuous column tests (2,000 ppm) and batch chamber tests ($4m^3$, 5,000ppm) showed that the modified adsorbent indicated about the selectivity of $CO_2$ more than 9.7% (0.613 mmol/g) compared with ordinary adsorbents and $CO_2$ removal efficiency of 88.8% within l hour, respectively. It was estimated that the modified adsorbent was applicable to indoor environments.

Evaluation of NH4+-N Ion Exchange Property using Natural Zeolite and Zeolite Carrier (천연 제올라이트와 제올라이트 담체를 이용한 NH4+-N 이온교환 특성 평가)

  • Lee, Kwang Hyun;Park, Min Suk;Joo, Hyun Jong
    • Journal of Korean Society on Water Environment
    • /
    • v.25 no.5
    • /
    • pp.750-757
    • /
    • 2009
  • The ammonium ion exchange characteristics of natural zeolite were investigated to remove ${NH_4}^+-N$. The effect of water temperature, particle size and competitive cation on the exchange capacity was examined. Ammonium ion exchange capacity tended to decrease when the temperature increased from $25^{\circ}C$ to $40^{\circ}C$. Exchange capacity was increased according to the particle size of natural zeolite comes to be small. Batch isotherm experiments were conducted for measuring ammonium ion exchange capacity. The ion exchange capacity was well described either by the Langmuir isotherm model or by the Freundlich isotherm model. The ammonium ion exchange capacity ($q_m$) of zeolite carrier can be calculated $11.744mg-{NH_4}^+/g$-carrier. The ion exchange capacity of manufactured zeolite carrier was showed a similar tendency as ion exchange capacity of powder-sized natural zeolite. Therefore, zeolite carrier can be used for increasing of nitrogen removal efficiency in the wastewater treatment plants.