• Title/Summary/Keyword: removal activity

Search Result 811, Processing Time 0.033 seconds

Study on Change of Microbial Activity and Removal Efficiency of Phosphorus with Alum Injection in the Biological Process (생물학적 처리공정 내 Alum 주입에 따른 인 처리 효율과 미생물 활성도 변화에 관한 연구)

  • Choi, Jung Su;Joo, Hyun Jong
    • Journal of Korean Society on Water Environment
    • /
    • v.27 no.2
    • /
    • pp.188-193
    • /
    • 2011
  • The effects of coagulants on the microorganisms when they are injected directly into the biological treatment facility for T-P removal have been easily observed from the results of past experiments. As such this study is set out to derive the effective plans for the coagulant dosage by analyzing the effects of the injected coagulant on the microbial activity during the chemical treatment for T-P removal. The research methods entailed the assessment of removal efficiency of T-P according to the coagulant dosage while changing the molar ration between Alum and influent phosphorus. At the same time Specific Oxygen Uptake Rate (SOUR) according to the coagulant dosage was measured. SOUR was used as a method for indirect assessment of the microbial activity according to the coagulant dosage. The results from the study showed that with the increase in the alum dosage, the removal efficiency T-P tended to increase. On the other hand, the increase in coagulant dosage resulted in the decrease in SOUR, which indicates the decrease in the microbial activity. Such reduction in the activity could be explained by the increase in the concentration of removal efficiency of $TBOD_5$. Based on experiment results from the study, it is determined that coagulant dosage affects the microbial activity. Moreover, the indirect assessment on the microbial activity using SOUR is considered possible.

A Study on the Characteristics of Pollutant Removal in Secondary Effluent from Wastewater Treatment Plant Using Silver Nanoparticles on Activated Carbon (은나노 활성탄에 의한 하수 2차 처리수 중의 오염물질 제거 특성에 관한 연구)

  • Seon, Yong-Ho
    • KSBB Journal
    • /
    • v.29 no.5
    • /
    • pp.353-360
    • /
    • 2014
  • This study targets the pollutant removal of secondary effluent from final clarifiers in wastewater treatment plant using silver nanoparticles on activated carbon. The removal efficiency and treatment characteristics of pollutant are anlayzed by perfoming experiments using granular activated carbon with silver nanoparticles and ordinary granular activated carbon. The specific surface area of granular activated carbon with silver nanoparticles is smaller than that of ordinary granular activated carbon. However, the removal efficiency of $COD_{Mn}$, T-N and T-P in experiments using activated carbon with silver nanoparticles are higher than that in experiment using ordinary granular activated carbon. That means the case of activated carbon with silver nanoparticles is much better at treatment activity. In addition, activated carbon with silver nanoparticles has antimicrobial activity because there is no microbe on the surface of it after experiments.

A Risk Assessment of Asbestos Fiber Leaks to Environment during Asbestos Removal Activity in Buildings (건물 내 석면제거 작업과 공기 중 석면의 외부누출 위험성 평가)

  • Paik, Namwon;Lee, Soungcheoul;Byeon, Jaecheol;Lee, Donghee
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.30 no.4
    • /
    • pp.405-411
    • /
    • 2020
  • Objectives: The objectives of this study were to investigate whether airborne fibers were released to the outside air from the asbestos removal area in buildings, and to confirm the existence of asbestos fibers in samples using transmission electron microscopy(TEM). Methods: A total of 1,295 samples was collected from inside and outside 155 asbestos removal areas. To investigate the release of asbestos fibers from the removal area, samples were collected at three locations, such as an entrance to change room, an exit of negative pressure unit(NPU) and perimeter areas. Samples were also collected in the removal area prior to and after removal activity. All samples were analyzed by phase contrast microscopy(PCM) and one-tenth of the samples was analyzed using TEM to discriminate asbestos fibers. Results: During the asbestos removal activity, 27(4.1%) of 662 samples collected outside the removal area showed airborne fiber concentrations equal to or in excess of 0.01 f/cc, the permissible emission standard of the Korean Ministry of Environment. Further, 111 samples were analyzed using TEM. The distribution of asbestos fiber concentrations was log-normal. It was found that 51 of 111 samples(46%) contained asbestos fibers. Conclusions: There is a potential risk of asbestos exposure among neighbors and the public outside the asbestos removal areas. It is recommended that the asbestos removal work be conducted strictly following the specifications required by government and/or professional organizations.

A Study of Removal of Phenol by Peroxidase Extracted from Oenanthe javanica (Blume) DC (미나리 Peroxidase를 이용한 Phenol제거에 관한 연구)

  • 탁창준;최한영;신정식;나규환;이장훈
    • Journal of Environmental Health Sciences
    • /
    • v.23 no.4
    • /
    • pp.121-126
    • /
    • 1997
  • Peroxidase as one of the organic enzyme catalyst is useful for the oxidation treatment of various aromatic compounds such as phenols. The peroxidase content of Oenanthe javanica was 24.85 unit/g-fw in leaf, 5.74 unit/g-fw in stem, and 34.69 unit/g-fw in root respectively. The crude peroxidase extracted from Oenanthe javanka can be kept under low temperature (-70$\circ$C) condition for 6 months with the maximum 1% activity reduction. The optimum conditions of removal for 100 ppm phenol was pH 6, hydrogen peroxide 3.5 mM, peroxidase activity 8 unit/ml, temperature 20$\circ$C respectively. In the wide range of concentration from 50 ppm to 750 ppm phenol reveals average 54% removal rate under the same peroxidase activity (8 unit/ml) and different amount of hydrogen peroxide proportional to phenol concentration. Especially at the concentration of 100 ppm the maximum phenol removal rate was 72%.

  • PDF

A Study on the Reduction Process of VOCs Emission from Paint Booth - A Hybrid Process of Biotrickling Filter and Activated Sludge Reactor

  • Lim Gye-Gyu
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.21 no.E2
    • /
    • pp.41-48
    • /
    • 2005
  • A novel hybrid system composed of a biotrickling filter and an activated sludge reactor was investigated under the conditions of four different SRTs (sludge retention times). The performance of the hybrid reactor was found to be directly comparable among the four different sludge ages. Discernible differences in the removal performance were observed among four different SRTs of 2, 4, 6, and 8 days. High removal efficiency was achieved by continuous circulation of activated sludge over the immobilized mixture culture, which allowed on pH control, addition of nutrients, and removal of paint VOCs (volatile organic compounds). The results also showed that the removal efficiency for a given pollutant depends on the activity of microorganisms based on the SRT. As the SRT increased gradually from 2 to 8 days, the average removal performance decreased. The highest removal rate was achieved at the SRT of 2 days at which the highest OUR (oxygen uptake rate), $6.1mg-O_2/liter-min$ was measured. Biological activity in the recycle microbes decreased to a much lower level, $3.6mg-O_2/liter-min$ at a SRT of 8 days. It is thus believed that young microorganisms were more active and more efficient for the VOCs removal of low concentrations and high flow rates. The apparent correlation of $R^2=0.996$ between the average removal efficiency and the average OUR at each SRTs suggests that VOCs degradation by young cells significantly affected the overall removal efficiency for the tested SRTs.

The Effect of Proteases on Contamination Removal (프로테아제의 오염 세정 효과)

  • Kim, Ju-Hye;Gwon, Mi-Yeon
    • Proceedings of the Korean Society of Dyers and Finishers Conference
    • /
    • 2008.04a
    • /
    • pp.181-183
    • /
    • 2008
  • Four different subtilisins of protease were investigated to see their effects on the cleaning activity. The cleaning solution was formulated with various non-ionic surfactants and other additives such as propylene glycol, triethanolamine, pH balancer etc. to evaluate their effect on enzyme activity as well. Evaluation of formulated cleaning solution was carried under K0120 using pre-soiled textiles from EMPA. The results showed that the cleaning activity on soil removal was not severly influenced by surfactant but the enzyme mostly. In addition, the activity of enzymes was not much affected by the type of surfactants as long as the surfactants were non-ionic. Liquinase among the four enzymes used in this study showed the best performance on soil removal, especially blood stain.

  • PDF

Simulated Nitrogen Removal for Double-Layered PVA/Alginate Structure for Autotrophic Single-Stage Nitrogen Removal (2중 구조의 PVA/alginate 겔 비드에서의 독립영양 단일공정 질소제거효율 시뮬레이션)

  • Bae, Hyokwon
    • Journal of Korean Society on Water Environment
    • /
    • v.38 no.4
    • /
    • pp.171-176
    • /
    • 2022
  • Recently, an autotrophic single-stage nitrogen removal (ASSNR) process based on the anaerobic ammonium oxidation (ANAMMOX) reaction has been proven as an economical ammonia treatment. It is highly evident that double-layered gel beads are a promising alternative to the natural biofilm for ASSNR because of the high mechanical strength of poly(vinyl alcohol) (PVA)/alginate structure and efficient protection of ANAMMOX bacteria from dissolved oxygen (DO) due to the thick outer layer. However, the thick outer layer results in severe mass transport limitation and consequent lowered bacterial activity. Therefore, the effects of the thickness of the outer layer on the overall reaction rate were tested in the biofilm model using AQUASIM for ammonia-oxidizing bacteria (AOB), nitrite-oxidizing bacteria (NOB) and ANAMMOX bacteria. A thickness of 0.5~1.0 mm is preferred for the maximum total nitrogen (TN) removal. In addition, a DO of 0.5 mg/L resulted in the best total nitrogen removal. A higher DO induces NOB activity and consequent lower TN removal efficiency. The optimal density of AO B and NO B density was 1~10% for a 10% ANAMMOX bacterial in the double-layered PVA/alginate gel beads. The real effects of operating parameters of the thickness of the outer layer, DO and concentrations of biomass balance should be intensively investigated in the controlled experiments in batch and continuous modes.

Effects on Microbial Activity of Aerobic Granular Sludge (AGS) in High-Salinity Wastewater (고농도 염분함유 폐수가 호기성 그래뉼 슬러지의 미생물 활성도에 미치는 영향)

  • Kim, Hyun-Gu;Ahn, Dae-Hee
    • Journal of Environmental Science International
    • /
    • v.28 no.7
    • /
    • pp.629-637
    • /
    • 2019
  • The purpose of this study was to evaluate the effect of high-salinity wastewater on the microbial activity of Aerobic Granule Sludge (AGS). Laboratory-scale experiments were performed using a sequencing batch reactor, and the Chemical Oxygen Demand (COD), nitrogen removal efficiency, sludge precipitability, and microbial activity were evaluated under various salinity injection. The COD removal efficiency was found to decrease gradually to 3.0% salinity injection, and it tended to recover slightly from 4.0%. The specific nitrification rate was 0.043 - 0.139 mg $NH_4{^+}-N/mg$ $MLVSS{\cdot}day$. The specific denitrification rate was 0.069 - 0.108 mg $NO_3{^-}-N/mg$ $MLVSS{\cdot}day$. The sludge volume index ($SVI_{30}$) ultimately decreased to 46 mL/g. The specific oxygen uptake rate decreased from an initial value 120.3 to a final value 70.7 mg $O_2/g$ $MLVSS{\cdot}hr$. Therefore, salinity injection affects the activity of AGS, causing degradation of the COD and nitrogen removal efficiency. It can be used as an indicator to objectively determine the effect of salinity on microbial activity.

Contribution of production and loss terms of fission products on in-containment activity under severe accident condition for VVER-1000

  • Jafarikia, S.;Feghhi, S.A.H.
    • Nuclear Engineering and Technology
    • /
    • v.51 no.1
    • /
    • pp.125-137
    • /
    • 2019
  • The purpose of this paper is to study the source term behavior after severe accidents by using a semi-kinetic model for simulation and calculation of in-containment activity. The reactor containment specification and the safety features of the containment under different accident conditions play a great role in evaluating the in-containment activity. Assuming in-vessel and instantaneous release of radioactivity into the containment, the behavior of in-containment isotopic activity is studied for noble gasses (Kr and Xe) and the more volatile elements of iodine, cesium, and aerosols such as Te, Rb and Sr as illustrative examples of source term release under LOCA conditions. The results of the activity removal mechanisms indicates that the impact of volumetric leakage rate for noble gasses is important during the accident, while the influence of deposition on the containment surfaces for cesium, mainly iodine isotopes and aerosol has the largest contribution in removal of activity during evolution of the accident.

Comparisons of Nitrogen and Phosphorus Removal Capacity of Four Macrophytes

  • Lee, Jeom-Sook;Ihm, Byung-Sun;Kim, Jong-Wook;Lee, Seung-Ho
    • The Korean Journal of Ecology
    • /
    • v.23 no.2
    • /
    • pp.163-167
    • /
    • 2000
  • To evaluate the water purification capacity of 4 emergent macrophytes in 4 tributaries of Mankyung River, nitrate reductase activity (NRA) and nutrient removal capacity were determined. Higher NRA occurred in emergent macrophytes such as Persicaria thunbergii and Oenanthe iavanica with 7.8 and 5.4 ${\mu}$moi NO$_2$ g$^{-1}$d.wt. h$^{-1}$. respectively. The nitrogen removal capacity of emergent macrophytes displaying higher NRA fell within the range of 0.85 to 1.95 mg g$^{-1}$d.wt. day$^{-1}$ and was higher in the order Phragmites communis > Persicaria thunbergii > Oenanthe iavanica > Zizania latifolia. The phosphorus removal capacity was within the range of 0.07 to 0.12 mg g$^{-1}$d.wt. day$^{-1}$ and was higher in the order Phragmites communis > Oenanthe iavanica > Persicaria thunbergii > Zizania latifolia. In all the domestic, industrial and agricultural wastewaters, Phragmites communis showed the highest nitrogen and phosphorus removal capacity; 1.36 and 0.0088 mg g$^{-1}$d.wt. day$^{-1}$ respectively. Among the 4 macrophytes. Phragmites communis was the most suitable species for water purification in 4 tributaries of Mankyung River.

  • PDF