• Title/Summary/Keyword: remote sensing image classification

Search Result 378, Processing Time 0.027 seconds

Land cover classification based on the phonology of Korea using NOAA-AVHRR

  • Kim, Won-Joo;Nam, Ki-Deock;Park, Chong-Hwa
    • Proceedings of the KSRS Conference
    • /
    • 1999.11a
    • /
    • pp.439-442
    • /
    • 1999
  • It is important to analyze the seasonal change profiles of land cover type in large scale for establishing preservation strategy and environmental monitoring. Because the NOAA-AVHRR data sets provide global data with high temporal resolution, it is suitable for the land cover classification of the large area. The objectives of this study were to classify land cover of Korea, to investigate the phenological profiles of land cover. The NOAA-AVHRR data from Jan. 1998 to Dec. 1998 were received by Korea Ocean Research & Development Institute(KORDI) and were used for this study. The NDVI data were produced from this data. And monthly maximum value composite data were made for reducing cloud effect and temporal classification. And the data were classified using the method of supervised classification. To label the land cover classes, they were classified again using generalized vegetation map and Landsat-TM classified image. And the profiles of each class was analyzed according to each month. Results of this study can be summarized as follows. First, it was verified that the use of vegetation map and TM classified map was available to obtain the temporal class labeling with NOAA-AVHRR. Second, phenological characteristics of plant communities of Korea using NOAA-AVHRR was identified. Third, NDVI of North Korea is lower on Summer than that of South Korea. And finally, Forest cover is higher than another cover types. Broadleaf forest is highest on may. Outline of covertype profiles was investigated.

  • PDF

Correction of Lunar Irradiation Effect and Change Detection Using Suomi-NPP Data (VIIRS DNB 영상의 달빛 영향 보정 및 변화 탐지)

  • Lee, Boram;Lee, Yoon-Kyung;Kim, Donghan;Kim, Sang-Wan
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.2
    • /
    • pp.265-278
    • /
    • 2019
  • Visible Infrared Imaging Radiometer Suite (VIIRS) Day/Night Band (DNB) data help to enable rapid emergency responses through detection of the artificial and natural disasters occurring at night. The DNB data without correction of lunar irradiance effect distributed by Korea Ocean Science Center (KOSC) has advantage for rapid change detection because of direct receiving. In this study, radiance differences according to the phase of the moon was analyzed for urban and mountain areas in Korean Peninsula using the DNB data directly receiving to KOSC. Lunar irradiance correction algorithm was proposed for the change detection. Relative correction was performed by regression analysis between the selected pixels considering the land cover classification in the reference DNB image during the new moon and the input DNB image. As a result of daily difference image analysis, the brightness value change in urban area and mountain area was ${\pm}30$ radiance and below ${\pm}1$ radiance respectively. The object based change detection was performed after the extraction of the main object of interest based on the average image of time series data in order to reduce the matching and geometric error between DNB images. The changes in brightness occurring in mountainous areas were effectively detected after the calibration of lunar irradiance effect, and it showed that the developed technology could be used for real time change detection.

Detection of forest Free - South Slope Features from Land Cover Classification in Mongolia

  • Bayarsaikhan, Uudus;Boldgiv, Bazartseren;Kim, Kyung-Ryul;Park, Kyung-Ae;Lee, Don-Koo
    • Proceedings of the KSRS Conference
    • /
    • 2009.03a
    • /
    • pp.354-359
    • /
    • 2009
  • Land cover types of Hustai National Park (HNP) in Mongolia, a hotspot area with rare species, were classified and their temporal changes were evaluated using Landsat MSS TM/ETM data between 1994 and 2000. Maximum likelihood classification analysis showed an overall accuracy of 88.0% and 85.0% for the 1994 and 2000 images, respectively. Kappa coefficients associated with the classification were resulted to 0.85 for 1994 and 0.82 for 2000 image. Land cover types revealed significant temporal changes in the classification maps between 1994 and 2000. The area has increased considerably by $166.5km^2$ for mountain steppe. By contrast, agricultural areas and degraded areas affected by human being activity were decreased by $46.1km^2$ and $194.8km^2$ over the six year span, respectively. These areas were replaced by mountain steppe area. Specifically, forest area was noticeably fragmented, accompanied by the decrease of $\sim400$ ha. The forest area revealed a pattern with systematic gain and loss associated with the specific phenomenon called as forest free-south slope. We discussed the potential environmental conditions responsible for the systematic pattern and addressed other biological impacts by outbreaks of forest pests and ungulates.

  • PDF

The change of land cover classification accuracies according to spatial resolution in case of Sunchon bay coastal wetland (위성영상 해상도에 따른 순천만 해안습지의 분류 정확도 변화)

  • Ku, Cha-Yong;Hwang, Chul-Sue
    • Journal of the Korean association of regional geographers
    • /
    • v.7 no.1
    • /
    • pp.35-50
    • /
    • 2001
  • Since remotely sensed images of coastal wetlands are very sensitive to spatial resolution, it is very important to select an optimum resolution for particular geographic phenomena needed to be represented. Scale is one of the most important factors in spatial analysis techniques, which is defined as a spatial and temporal interval for a measurement or observation and is determined by the spatial extent of study area or the measurement unit. In order to acquire the optimum scale for a particular subject (i.e., coastal wetlands), measuring and representing the characteristics of attribute information extracted from the remotely sensed images are required. This study aims to explore and analyze the scale effects of attribute information extracted from remotely sensed coastal wetlands images. Specifically, it is focused on identifying the effects of scale in response to spatial resolution changes and suggesting a methodology for exploring the optimum spatial resolution. The LANDSAT TM image of Sunchon Bay was classified by a supervised classification method, Six land cover types were classified and the Kappa index for this classification was 84.6%. In order to explore the effects of scale in the classification procedure, a set of images that have different spatial resolutions were created by a aggregation method. Coarser images were created with the original image by averaging the DN values of neighboring pixels. Sixteen images whose resolution range from 30 m to 480 m were generated and classified to obtain land cover information using the same training set applied to the initial classification. The values of Kappa index show a distinctive pattern according to the spatial resolution change. Up to 120m, the values of Kappa index changed little, but Kappa index decreased dramatically at the 150m. However, at the resolution of 240 m and 270m, the classification accuracy was increased. From this observation, the optimum resolution for the study area would be either at 240m or 270m with respect to the classification accuracy and the best quality of attribute information can be obtained from these resolutions. Procedures and methodologies developed from this study would be applied to similar kinds and be used as a methodology of identifying and defining an optimum spatial resolution for a given problem.

  • PDF

Radiometric Cross Calibration of KOMPSAT-3 and Lnadsat-8 for Time-Series Harmonization (KOMPSAT-3와 Landsat-8의 시계열 융합활용을 위한 교차검보정)

  • Ahn, Ho-yong;Na, Sang-il;Park, Chan-won;Hong, Suk-young;So, Kyu-ho;Lee, Kyung-do
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.6_2
    • /
    • pp.1523-1535
    • /
    • 2020
  • In order to produce crop information using remote sensing, we use classification and growth monitoring based on crop phenology. Therefore, time-series satellite images with a short period are required. However, there are limitations to acquiring time-series satellite data, so it is necessary to use fusion with other earth observation satellites. Before fusion of various satellite image data, it is necessary to overcome the inherent difference in radiometric characteristics of satellites. This study performed Korea Multi-Purpose Satellite-3 (KOMPSAT-3) cross calibration with Landsat-8 as the first step for fusion. Top of Atmosphere (TOA) Reflectance was compared by applying Spectral Band Adjustment Factor (SBAF) to each satellite using hyperspectral sensor band aggregation. As a result of cross calibration, KOMPSAT-3 and Landsat-8 satellites showed a difference in reflectance of less than 4% in Blue, Green, and Red bands, and 6% in NIR bands. KOMPSAT-3, without on-board calibrator, idicate lower radiometric stability compared to ladnsat-8. In the future, efforts are needed to produce normalized reflectance data through BRDF (Bidirectional reflectance distribution function) correction and SBAF application for spectral characteristics of agricultural land.

Classification of Industrial Parks and Quarries Using U-Net from KOMPSAT-3/3A Imagery (KOMPSAT-3/3A 영상으로부터 U-Net을 이용한 산업단지와 채석장 분류)

  • Che-Won Park;Hyung-Sup Jung;Won-Jin Lee;Kwang-Jae Lee;Kwan-Young Oh;Jae-Young Chang;Moung-Jin Lee
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_3
    • /
    • pp.1679-1692
    • /
    • 2023
  • South Korea is a country that emits a large amount of pollutants as a result of population growth and industrial development and is also severely affected by transboundary air pollution due to its geographical location. As pollutants from both domestic and foreign sources contribute to air pollution in Korea, the location of air pollutant emission sources is crucial for understanding the movement and distribution of pollutants in the atmosphere and establishing national-level air pollution management and response strategies. Based on this background, this study aims to effectively acquire spatial information on domestic and international air pollutant emission sources, which is essential for analyzing air pollution status, by utilizing high-resolution optical satellite images and deep learning-based image segmentation models. In particular, industrial parks and quarries, which have been evaluated as contributing significantly to transboundary air pollution, were selected as the main research subjects, and images of these areas from multi-purpose satellites 3 and 3A were collected, preprocessed, and converted into input and label data for model training. As a result of training the U-Net model using this data, the overall accuracy of 0.8484 and mean Intersection over Union (mIoU) of 0.6490 were achieved, and the predicted maps showed significant results in extracting object boundaries more accurately than the label data created by course annotations.

Performance Analysis of Automatic Target Recognition Using Simulated SAR Image (표적 SAR 시뮬레이션 영상을 이용한 식별 성능 분석)

  • Lee, Sumi;Lee, Yun-Kyung;Kim, Sang-Wan
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.3
    • /
    • pp.283-298
    • /
    • 2022
  • As Synthetic Aperture Radar (SAR) image can be acquired regardless of the weather and day or night, it is highly recommended to be used for Automatic Target Recognition (ATR) in the fields of surveillance, reconnaissance, and national security. However, there are some limitations in terms of cost and operation to build various and vast amounts of target images for the SAR-ATR system. Recently, interest in the development of an ATR system based on simulated SAR images using a target model is increasing. Attributed Scattering Center (ASC) matching and template matching mainly used in SAR-ATR are applied to target classification. The method based on ASC matching was developed by World View Vector (WVV) feature reconstruction and Weighted Bipartite Graph Matching (WBGM). The template matching was carried out by calculating the correlation coefficient between two simulated images reconstructed with adjacent points to each other. For the performance analysis of the two proposed methods, the Synthetic and Measured Paired Labeled Experiment (SAMPLE) dataset was used, which has been recently published by the U.S. Defense Advanced Research Projects Agency (DARPA). We conducted experiments under standard operating conditions, partial target occlusion, and random occlusion. The performance of the ASC matching is generally superior to that of the template matching. Under the standard operating condition, the average recognition rate of the ASC matching is 85.1%, and the rate of the template matching is 74.4%. Also, the ASC matching has less performance variation across 10 targets. The ASC matching performed about 10% higher than the template matching according to the amount of target partial occlusion, and even with 60% random occlusion, the recognition rate was 73.4%.

Training Performance Analysis of Semantic Segmentation Deep Learning Model by Progressive Combining Multi-modal Spatial Information Datasets (다중 공간정보 데이터의 점진적 조합에 의한 의미적 분류 딥러닝 모델 학습 성능 분석)

  • Lee, Dae-Geon;Shin, Young-Ha;Lee, Dong-Cheon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.40 no.2
    • /
    • pp.91-108
    • /
    • 2022
  • In most cases, optical images have been used as training data of DL (Deep Learning) models for object detection, recognition, identification, classification, semantic segmentation, and instance segmentation. However, properties of 3D objects in the real-world could not be fully explored with 2D images. One of the major sources of the 3D geospatial information is DSM (Digital Surface Model). In this matter, characteristic information derived from DSM would be effective to analyze 3D terrain features. Especially, man-made objects such as buildings having geometrically unique shape could be described by geometric elements that are obtained from 3D geospatial data. The background and motivation of this paper were drawn from concept of the intrinsic image that is involved in high-level visual information processing. This paper aims to extract buildings after classifying terrain features by training DL model with DSM-derived information including slope, aspect, and SRI (Shaded Relief Image). The experiments were carried out using DSM and label dataset provided by ISPRS (International Society for Photogrammetry and Remote Sensing) for CNN-based SegNet model. In particular, experiments focus on combining multi-source information to improve training performance and synergistic effect of the DL model. The results demonstrate that buildings were effectively classified and extracted by the proposed approach.

Development of Cloud Detection Method Considering Radiometric Characteristics of Satellite Imagery (위성영상의 방사적 특성을 고려한 구름 탐지 방법 개발)

  • Won-Woo Seo;Hongki Kang;Wansang Yoon;Pyung-Chae Lim;Sooahm Rhee;Taejung Kim
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_1
    • /
    • pp.1211-1224
    • /
    • 2023
  • Clouds cause many difficult problems in observing land surface phenomena using optical satellites, such as national land observation, disaster response, and change detection. In addition, the presence of clouds affects not only the image processing stage but also the final data quality, so it is necessary to identify and remove them. Therefore, in this study, we developed a new cloud detection technique that automatically performs a series of processes to search and extract the pixels closest to the spectral pattern of clouds in satellite images, select the optimal threshold, and produce a cloud mask based on the threshold. The cloud detection technique largely consists of three steps. In the first step, the process of converting the Digital Number (DN) unit image into top-of-atmosphere reflectance units was performed. In the second step, preprocessing such as Hue-Value-Saturation (HSV) transformation, triangle thresholding, and maximum likelihood classification was applied using the top of the atmosphere reflectance image, and the threshold for generating the initial cloud mask was determined for each image. In the third post-processing step, the noise included in the initial cloud mask created was removed and the cloud boundaries and interior were improved. As experimental data for cloud detection, CAS500-1 L2G images acquired in the Korean Peninsula from April to November, which show the diversity of spatial and seasonal distribution of clouds, were used. To verify the performance of the proposed method, the results generated by a simple thresholding method were compared. As a result of the experiment, compared to the existing method, the proposed method was able to detect clouds more accurately by considering the radiometric characteristics of each image through the preprocessing process. In addition, the results showed that the influence of bright objects (panel roofs, concrete roads, sand, etc.) other than cloud objects was minimized. The proposed method showed more than 30% improved results(F1-score) compared to the existing method but showed limitations in certain images containing snow.

An Implementation of OTB Extension to Produce TOA and TOC Reflectance of LANDSAT-8 OLI Images and Its Product Verification Using RadCalNet RVUS Data (Landsat-8 OLI 영상정보의 대기 및 지표반사도 산출을 위한 OTB Extension 구현과 RadCalNet RVUS 자료를 이용한 성과검증)

  • Kim, Kwangseob;Lee, Kiwon
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.3
    • /
    • pp.449-461
    • /
    • 2021
  • Analysis Ready Data (ARD) for optical satellite images represents a pre-processed product by applying spectral characteristics and viewing parameters for each sensor. The atmospheric correction is one of the fundamental and complicated topics, which helps to produce Top-of-Atmosphere (TOA) and Top-of-Canopy (TOC) reflectance from multi-spectral image sets. Most remote sensing software provides algorithms or processing schemes dedicated to those corrections of the Landsat-8 OLI sensors. Furthermore, Google Earth Engine (GEE), provides direct access to Landsat reflectance products, USGS-based ARD (USGS-ARD), on the cloud environment. We implemented the Orfeo ToolBox (OTB) atmospheric correction extension, an open-source remote sensing software for manipulating and analyzing high-resolution satellite images. This is the first tool because OTB has not provided calibration modules for any Landsat sensors. Using this extension software, we conducted the absolute atmospheric correction on the Landsat-8 OLI images of Railroad Valley, United States (RVUS) to validate their reflectance products using reflectance data sets of RVUS in the RadCalNet portal. The results showed that the reflectance products using the OTB extension for Landsat revealed a difference by less than 5% compared to RadCalNet RVUS data. In addition, we performed a comparative analysis with reflectance products obtained from other open-source tools such as a QGIS semi-automatic classification plugin and SAGA, besides USGS-ARD products. The reflectance products by the OTB extension showed a high consistency to those of USGS-ARD within the acceptable level in the measurement data range of the RadCalNet RVUS, compared to those of the other two open-source tools. In this study, the verification of the atmospheric calibration processor in OTB extension was carried out, and it proved the application possibility for other satellite sensors in the Compact Advanced Satellite (CAS)-500 or new optical satellites.