• 제목/요약/키워드: remote sensing image classification

검색결과 376건 처리시간 0.023초

Remote Sensing Image Classification for Land Cover Mapping in Developing Countries: A Novel Deep Learning Approach

  • Lynda, Nzurumike Obianuju;Nnanna, Nwojo Agwu;Boukar, Moussa Mahamat
    • International Journal of Computer Science & Network Security
    • /
    • 제22권2호
    • /
    • pp.214-222
    • /
    • 2022
  • Convolutional Neural networks (CNNs) are a category of deep learning networks that have proven very effective in computer vision tasks such as image classification. Notwithstanding, not much has been seen in its use for remote sensing image classification in developing countries. This is majorly due to the scarcity of training data. Recently, transfer learning technique has successfully been used to develop state-of-the art models for remote sensing (RS) image classification tasks using training and testing data from well-known RS data repositories. However, the ability of such model to classify RS test data from a different dataset has not been sufficiently investigated. In this paper, we propose a deep CNN model that can classify RS test data from a dataset different from the training dataset. To achieve our objective, we first, re-trained a ResNet-50 model using EuroSAT, a large-scale RS dataset to develop a base model then we integrated Augmentation and Ensemble learning to improve its generalization ability. We further experimented on the ability of this model to classify a novel dataset (Nig_Images). The final classification results shows that our model achieves a 96% and 80% accuracy on EuroSAT and Nig_Images test data respectively. Adequate knowledge and usage of this framework is expected to encourage research and the usage of deep CNNs for land cover mapping in cases of lack of training data as obtainable in developing countries.

AUTOMATIC IMAGE SEGMENTATION OF HIGH RESOLUTION REMOTE SENSING DATA BY COMBINING REGION AND EDGE INFORMATION

  • Byun, Young-Gi;Kim, Yong-II
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2008년도 International Symposium on Remote Sensing
    • /
    • pp.72-75
    • /
    • 2008
  • Image segmentation techniques becoming increasingly important in the field of remote sensing image analysis in areas such as object oriented image classification. This paper presents a new method for image segmentation in High Resolution Remote Sensing Image based on Seeded Region Growing (SRG) and Edge Information. Firstly, multi-spectral edge detection was done using an entropy operator in pan-sharpened QuickBird imagery. Then, the initial seeds were automatically selected from the obtained edge map. After automatic selection of significant seeds, an initial segmentation was achieved by applying SRG. Finally the region merging process, using region adjacency graph (RAG), was carried out to get the final segmentation result. Experimental results demonstrated that the proposed method has good potential for application in the segmentation of high resolution satellite images.

  • PDF

원격 탐사 자료와 현장 조사 자료를 이용한 기저면적 예측 지도 제작 (Basal Area Mapping using Remote Sensing and Ecological Data)

  • 이정빈;;허준
    • 대한원격탐사학회지
    • /
    • 제24권6호
    • /
    • pp.621-629
    • /
    • 2008
  • 인도의 Tamil Nadu 지역을 대상지역으로 선택하여 Landsat ETM+ 영상과 현장 조사 자료(기저면적, 개체 수, 종의 수)를 취득하였다. 취득된 자료를 통하여 (1) 영상의 분류, (2) 식생지수 영상의 추출(NDVI, Tasseled Cap 토양명도, 녹색식생, 토양습도), (3) 가장 상관관계가 높은 결과를 보인 NDVI와 기저면적(Basal area)을 이용한 식생다양성 분포 예측 지도 제작이 이루어 졌다. 기저면적과 NDVI가 가장 높은 상관관계를 가지며 대상지역 영상분류 결과 69%정도의 정확도를 보였다.

원격탐사 영상의 감독분류를 위한 개선된 하이브리드 c-Means 군집화 알고리즘 (Improved Algorithm of Hybrid c-Means Clustering for Supervised Classification of Remote Sensing Images)

  • 전영준;김진일
    • 융합신호처리학회논문지
    • /
    • 제8권3호
    • /
    • pp.185-191
    • /
    • 2007
  • 윈격탐사 영상은 파장대에 따라 나누어진 여러 개의 밴드로부터 수집된 다중분광 이미지 데이터이다. 위성영상 분류는 원격탐사 처리 과정에 있어서 가장 중요한 분석 기법으로써 영상을 구성하는 각각의 화소들 중 비슷한 분광 특성을 갖는 것끼리 집단화시켜주는 방법이다. 본 논문에서는 PFCM 알고리즘을 응용한 원격탐사 영상의 패턴분류 방법에 관하여 연구하였다. PFCM 알고리즘은 각 데이터와 특정 클러스터 중심과의 거리에 대한 소속정도를 고려한 FCM 클러스터링 알고리즘과 데이터와 해당 클러스터 중심과의 거리에 의존하여 패턴의 전형성(typicality)을 고려한 PCM 클러스터링 알고리즘을 결합한 방법이다. 본 연구에서는 분류 항목별 학습데이터를 선정한 후 이를 PFCM 알고리즘에 적용하여 감독분류를 수행하였다. Landsat TM과 IKONOS 원격탐사 위성영상을 이용하여 PFCM 알고리즘의 적용성을 검증하였다. PFCM 알고리즘을 이용한 감독분류는 PCM, FCM 분류방법보다 좋은 결과를 보여주었으며, 또한 전통적인 분류방법인 최대우도분류보다도 정확도가 더 높은 결과를 보여주었다.

  • PDF

소프트 컴퓨팅기술을 이용한 원격탐사 다중 분광 이미지 데이터의 분류에 관한 연구 -Rough 집합을 중심으로- (A Study on Classifications of Remote Sensed Multispectral Image Data using Soft Computing Technique - Stressed on Rough Sets -)

  • 원성현
    • 경영과정보연구
    • /
    • 제3권
    • /
    • pp.15-45
    • /
    • 1999
  • Processing techniques of remote sensed image data using computer have been recognized very necessary techniques to all social fields, such as, environmental observation, land cultivation, resource investigation, military trend grasp and agricultural product estimation, etc. Especially, accurate classification and analysis to remote sensed image da are important elements that can determine reliability of remote sensed image data processing systems, and many researches have been processed to improve these accuracy of classification and analysis. Traditionally, remote sensed image data processing systems have been processed 2 or 3 selected bands in multiple bands, in this time, their selection criterions are statistical separability or wavelength properties. But, it have be bring up the necessity of bands selection method by data distribution characteristics than traditional bands selection by wavelength properties or statistical separability. Because data sensing environments change from multispectral environments to hyperspectral environments. In this paper for efficient data classification in multispectral bands environment, a band feature extraction method using the Rough sets theory is proposed. First, we make a look up table from training data, and analyze the properties of experimental multispectral image data, then select the efficient band using indiscernibility relation of Rough set theory from analysis results. Proposed method is applied to LANDSAT TM data on 2 June 1992. From this, we show clustering trends that similar to traditional band selection results by wavelength properties, from this, we verify that can use the proposed method that centered on data properties to select the efficient bands, though data sensing environment change to hyperspectral band environments.

  • PDF

Evidential Fusion of Multsensor Multichannel Imagery

  • Lee Sang-Hoon
    • 대한원격탐사학회지
    • /
    • 제22권1호
    • /
    • pp.75-85
    • /
    • 2006
  • This paper has dealt with a data fusion for the problem of land-cover classification using multisensor imagery. Dempster-Shafer evidence theory has been employed to combine the information extracted from the multiple data of same site. The Dempster-Shafer's approach has two important advantages for remote sensing application: one is that it enables to consider a compound class which consists of several land-cover types and the other is that the incompleteness of each sensor data due to cloud-cover can be modeled for the fusion process. The image classification based on the Dempster-Shafer theory usually assumes that each sensor is represented by a single channel. The evidential approach to image classification, which utilizes a mass function obtained under the assumption of class-independent beta distribution, has been discussed for the multiple sets of mutichannel data acquired from different sensors. The proposed method has applied to the KOMPSAT-1 EOC panchromatic imagery and LANDSAT ETM+ data, which were acquired over Yongin/Nuengpyung area of Korean peninsula. The experiment has shown that it is greatly effective on the applications in which it is hard to find homogeneous regions represented by a single land-cover type in training process.

Measurements of Impervious Surfaces - per-pixel, sub-pixel, and object-oriented classification -

  • Kang, Min Jo;Mesev, Victor;Kim, Won Kyung
    • 대한원격탐사학회지
    • /
    • 제31권4호
    • /
    • pp.303-319
    • /
    • 2015
  • The objectives of this paper are to measure surface imperviousness using three different classification methods: per-pixel, sub-pixel, and object-oriented classification. They are tested on high-spatial resolution QuickBird data at 2.4 meters (four spectral bands and three principal component bands) as well as a medium-spatial resolution Landsat TM image at 30 meters. To measure impervious surfaces, we selected 30 sample sites with different land uses and residential densities across image representing the city of Phoenix, Arizona, USA. For per-pixel an unsupervised classification is first conducted to provide prior knowledge on the possible candidate spectral classes, and then a supervised classification is performed using the maximum-likelihood rule. For sub-pixel classification, a Linear Spectral Mixture Analysis (LSMA) is used to disentangle land cover information from mixed pixels. For object-oriented classification several different sets of scale parameters and expert decision rules are implemented, including a nearest neighbor classifier. The results from these three methods show that the object-oriented approach (accuracy of 91%) provides more accurate results than those achieved by per-pixel algorithm (accuracy of 67% and 83% using Landsat TM and QuickBird, respectively). It is also clear that sub-pixel algorithm gives more accurate results (accuracy of 87%) in case of intensive and dense urban areas using medium-resolution imagery.

Evaluating the Contribution of Spectral Features to Image Classification Using Class Separability

  • Ye, Chul-Soo
    • 대한원격탐사학회지
    • /
    • 제36권1호
    • /
    • pp.55-65
    • /
    • 2020
  • Image classification needs the spectral similarity comparison between spectral features of each pixel and the representative spectral features of each class. The spectral similarity is obtained by computing the spectral feature vector distance between the pixel and the class. Each spectral feature contributes differently in the image classification depending on the class separability of the spectral feature, which is computed using a suitable vector distance measure such as the Bhattacharyya distance. We propose a method to determine the weight value of each spectral feature in the computation of feature vector distance for the similarity measurement. The weight value is determined by the ratio between each feature separability value to the total separability values of all the spectral features. We created ten spectral features consisting of seven bands of Landsat-8 OLI image and three indices, NDVI, NDWI and NDBI. For three experimental test sites, we obtained the overall accuracies between 95.0% and 97.5% and the kappa coefficients between 90.43% and 94.47%.

New Unsupervised Classification Technique for Polarimetric SAR Images

  • Oh, Yi-Sok;Lee, Kyung-Yup;Jang, Ge-Ba
    • 대한원격탐사학회지
    • /
    • 제25권3호
    • /
    • pp.255-261
    • /
    • 2009
  • A new polarimetric SAR image classification technique based on the degree of polarization (DoP) and the co-polarized phase-difference (CPD) is presented in this paper. Since the DoP and the CPD of a scattered wave provide information on the randomness of the scattering and the type of scattering mechanisms, at first, the statistics of the DoP and CPD are examined with measured polarimetric SAR image data. Then, a DoP-CPD diagram with appropriate boundaries between six different classes is developed based on the SAR image. The classification technique is verified using the JPL AirSAR and ALOS PALSAR polarimetric data. The technique may have capability to classify an SAR image into six major classes; a bare surface, a village, a crown-layer short vegetation canopy, a trunk-layer short vegetation canopy, a crown-layer forest, and a trunk-dominated forest.

Adaptive Parametric Estimation and Classification of Remotely Sensed Imagery Using a Pyramid Structure

  • Kim, Kyung-Sook
    • 대한원격탐사학회지
    • /
    • 제7권1호
    • /
    • pp.69-86
    • /
    • 1991
  • An unsupervised region based image segmentation algorithm implemented with a pyramid structure has been developed. Rather than depending on thraditional local splitting and merging of regions with a similarity test of region statistics, the algorithm identifies the homogenous and boundary regions at each level of pyramid, then the global parameters of esch class are estimated and updated with values of the homogenous regions represented at the level of the pyramid using the mixture distribution estimation. The image is then classified through the pyramid structure. Classification results obtained for both simulated and SPOT imagery are presented.