• Title/Summary/Keyword: remote sensing image analysis

Search Result 639, Processing Time 0.031 seconds

SWT -based Wavelet Filter Application for De-noising of Remotely Sensed Imageries

  • Yoo Hee-Young;Lee Kiwon;Kwon Byung-Doo
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.505-508
    • /
    • 2005
  • Wavelet scheme can be applied to the various remote sensing problems: conventional multi-resolution image analysis, compression of large image sets, fusion of heterogeneous sensor image and segmentation of features. In this study, we attempted wavelet-based filtering and its analysis. Traditionally, statistical methods and adaptive filter are used to manipulate noises in the image processing procedure. While we tried to filter random noise from optical image and radar image using Discrete Wavelet Transform (DW1) and Stationary Wavelet Transform (SW1) and compared with existing methods such as median filter and adaptive filter. In result, SWT preserved boundaries and reduced noises most effectively. If appropriate thresholds are used, wavelet filtering will be applied to detect road boundaries, buildings, cars and other complex features from high-resolution imagery in an urban environment as well as noise filtering

  • PDF

ERS-1 AND CCRS C-SAR Data Integration For Look Direction Bias Correction Using Wavelet Transform

  • Won, J.S.;Moon, Woo-Il M.;Singhroy, Vern;Lowman, Paul-D.Jr.
    • Korean Journal of Remote Sensing
    • /
    • v.10 no.2
    • /
    • pp.49-62
    • /
    • 1994
  • Look direction bias in a single look SAR image can often be misinterpreted in the geological application of radar data. This paper investigates digital processing techniques for SAR image data integration and compensation of the SAR data look direction bias. The two important approaches for reducing look direction bias and integration of multiple SAR data sets are (1) principal component analysis (PCA), and (2) wavelet transform(WT) integration techniques. These two methods were investigated and tested with the ERS-1 (VV-polarization) and CCRS*s airborne (HH-polarization) C-SAR image data sets recorded over the Sudbury test site, Canada. The PCA technique has been very effective for integration of more than two layers of digital image data. When there only two sets of SAR data are available, the PCA thchnique requires at least one more set of auxiliary data for proper rendition of the fine surface features. The WT processing approach of SAR data integration utilizes the property which decomposes images into approximated image ( low frequencies) characterizing the spatially large and relatively distinct structures, and detailed image (high frequencies) in which the information on detailed fine structures are preserved. The test results with the ERS-1and CCRS*s C-SAR data indicate that the new WT approach is more efficient and robust in enhancibng the fine details of the multiple SAR images than the PCA approach.

Application of RS and GIS in Extraction of Building Damage Caused by Earthquake

  • Wang, X.Q.;Ding, X.;Dou, A.X.
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.1206-1208
    • /
    • 2003
  • The extraction of earthquake damage from remote sensed imagery requires high spatial resolution and temporal effectiveness of acquisition of imagery. The analog photographs and visual interpretation were taken traditionally. Now it is possible to acquire damage information from many commercial high resolution RS satellites. The key techniques are processing velocity and precision. The authors developed the automatic / semiautomatic image process techniques including feature enhancement, and classification, designed the emergency Earthquake Damage and Losses Evaluate System based on Remote Sensing (RSEDLES). The paper introduced the functions of RSEDLES as well as its application to the earthquakes occurred recently.

  • PDF

Automatic Cross-calibration of Multispectral Imagery with Airborne Hyperspectral Imagery Using Spectral Mixture Analysis

  • Yeji, Kim;Jaewan, Choi;Anjin, Chang;Yongil, Kim
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.33 no.3
    • /
    • pp.211-218
    • /
    • 2015
  • The analysis of remote sensing data depends on sensor specifications that provide accurate and consistent measurements. However, it is not easy to establish confidence and consistency in data that are analyzed by different sensors using various radiometric scales. For this reason, the cross-calibration method is used to calibrate remote sensing data with reference image data. In this study, we used an airborne hyperspectral image in order to calibrate a multispectral image. We presented an automatic cross-calibration method to calibrate a multispectral image using hyperspectral data and spectral mixture analysis. The spectral characteristics of the multispectral image were adjusted by linear regression analysis. Optimal endmember sets between two images were estimated by spectral mixture analysis for the linear regression analysis, and bands of hyperspectral image were aggregated based on the spectral response function of the two images. The results were evaluated by comparing the Root Mean Square Error (RMSE), the Spectral Angle Mapper (SAM), and average percentage differences. The results of this study showed that the proposed method corrected the spectral information in the multispectral data by using hyperspectral data, and its performance was similar to the manual cross-calibration. The proposed method demonstrated the possibility of automatic cross-calibration based on spectral mixture analysis.

Region of Interest Detection Based on Visual Attention and Threshold Segmentation in High Spatial Resolution Remote Sensing Images

  • Zhang, Libao;Li, Hao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.8
    • /
    • pp.1843-1859
    • /
    • 2013
  • The continuous increase of the spatial resolution of remote sensing images brings great challenge to image analysis and processing. Traditional prior knowledge-based region detection and target recognition algorithms for processing high resolution remote sensing images generally employ a global searching solution, which results in prohibitive computational complexity. In this paper, a more efficient region of interest (ROI) detection algorithm based on visual attention and threshold segmentation (VA-TS) is proposed, wherein a visual attention mechanism is used to eliminate image segmentation and feature detection to the entire image. The input image is subsampled to decrease the amount of data and the discrete moment transform (DMT) feature is extracted to provide a finer description of the edges. The feature maps are combined with weights according to the amount of the "strong points" and the "salient points". A threshold segmentation strategy is employed to obtain more accurate region of interest shape information with the very low computational complexity. Experimental statistics have shown that the proposed algorithm is computational efficient and provide more visually accurate detection results. The calculation time is only about 0.7% of the traditional Itti's model.

RADIOMETRIC RESTORATION OF SHADOW AREAS FROM KOMPSAT-2 IMAGERY

  • Choi, Jae-Wan;Kim, Hye-Jin;Han, You-Kyung;Kim, Yong-II
    • Proceedings of the KSRS Conference
    • /
    • 2008.10a
    • /
    • pp.371-374
    • /
    • 2008
  • In very high-spatial resolution remote sensing imagery, it is difficult to extract the feature information of various objects because of occlusion and shadows. Moreover, various and feeble information within shadows can be of use in GIS-based applications and remote sensing analysis. In this paper, we developed a radiometric restoration method for shadow areas using KOMPSAT-2 satellite image. After detecting the shadow, non-shadow pixels nearby are extracted using a morphological filter. An iterative linear regression method is applied to calculate the relationship between shadow and non-shadow pixels. The shadows are restored by the parameters of the linear regression algorithm. Tests show that recovery of shadowed areas by our method leads to improved image quality.

  • PDF

Ocean Scanning Multi-spectral Imager (OSMI) Pre-Launch Radiometric Performance Analysis

  • Cho, Young-Min
    • Proceedings of the KSRS Conference
    • /
    • 1999.11a
    • /
    • pp.390-395
    • /
    • 1999
  • Ocean Scanning Multispectral Imager (OSMI) is a payload on the Korean Multi-purpose SATellite (KOMPSAT) to perform worldwide ocean color monitoring for the study of biological oceanography KOMPSAT will be launched in the middle of November this year. The radiometric performance of OSMI is analyzed for various gain settings in the viewpoint of the instrument developer for OSMI calibration and application based on its ground performance measurement data for 8 primary spectral bands of OSMI. The radiometric response linearity and dynamic range are analyzed for the image radiometric calibration and the estimation of OSMI image quality for the ocean remote sensing area. The dynamic range is compared with the nominal input radiance for the ocean and the land. The noise equivalent radiance (NER) corresponding to the instrument radiometric noise is compared with the radiometric resolution of signal digitization (1-count equivalent radiance). The best gain setting of OSMI for ocean monitoring is recommended. This analysis is considered to be useful for the OSMI mission and operation planning, the OSMI image data calibration, and users' understanding about OSMI image quality.

  • PDF

JPEG Compression Pereformance Analysis of MTSAT-1R HRIT_LRIT

  • Kim, Tae-Young;Kim, Tae-Hoon;Ahn, Sang-Il;SaKong, Young-Bo
    • Korean Journal of Remote Sensing
    • /
    • v.22 no.5
    • /
    • pp.463-468
    • /
    • 2006
  • This paper analyzed the JPEG compression performance of MTSAT-lR (Multi-functional Transport Satellite-1 Replacement), which is offering the LRIT/HRIT (Low Rate Information Transmissio/High Rate Information Transmission) service now, in order to design the system regarding LRIT/HRIT of COMS (Communication, Ocean and Meteorological Satellite). To do so, we analysed Lossy and Lossless JPEG compression performance regarding the MTSAT-1R LRIT/HRIT data for 10 days, and made comparison to the image characteristics, and understood the JPEG compression characteristics regarding JPEG compression of geostationary meteorological satellite. This result of compression performance analysis is expected to be a reference not only to the system design and realization of COMS LRIT/HRIT but also to those who develop other meteorological satellite receiving systems.

The Preliminary Study for the Applied to Geological Survey using the Landsat TM Satellite Image of the Tanggung Area of Southern Part of the Bandung, Indonesia

  • Kim, I. J.;Lee, S.
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.135-137
    • /
    • 2003
  • The purpose of this preliminary study is the applied to geology using the Landsat TM satellite image of the Tanggung area of southern part of the Bandung, Indonesia to provide basic information for geological survey. For this, topography, geology and satellite image were constructed to spatial database. Digital elevation, slope, aspect, curvature, hill shade of topography were calculated from the topographic database and lithology was imported from the geological database. Lineament, lineament density, and NDVI were extracted the Landsat TM satellite image. The results showed the close relationship between geology and terrain and satellite image. Each sedimentary rock seldom corresponds with geology and analyses of topography but as a whole for sedimentary rocks coincide with them. Tuff and volcanic breccia in the volcanic rocks correspond with the result of terrain analyses. Talus deposits is well matched with the analyses of opography/satellite image.

  • PDF

TIN Based Geometric Correction with GCP

  • Seo, Ji-Hun;Jeong, Soo;Kim, Kyoung-Ok
    • Korean Journal of Remote Sensing
    • /
    • v.19 no.3
    • /
    • pp.247-253
    • /
    • 2003
  • The mainly used technique to correct satellite images with geometric distortion is to develop a mathematical relationship between pixels on the image and corresponding points on the ground. Polynomial models with various transformations have been designed for defining the relationship between two coordinate systems. GCP based geometric correction has peformed overall plane to plane mapping. In the overall plane mapping, overall structure of a scene is considered, but local variation is discarded. The Region with highly variant height is rectified with distortion on overall plane mapping. To consider locally variable region in satellite image, TIN-based rectification on a satellite image is proposed in this paper. This paper describes the relationship between GCP distribution and rectification model through experimental result and analysis about each rectification model. We can choose a geometric correction model as the structural characteristic of a satellite image and the acquired GCP distribution.