• Title/Summary/Keyword: remodeled bubble generating pump

Search Result 2, Processing Time 0.016 seconds

Comparison of the Efficiency between a Remodeled Bubble Generating Pumps for an Aquarium Fish and the Existed Commercial Air Sampler for the Sampling of Ambient Air Asbestos (공기 중 석면농도 분석시 관상어용 기포발생기를 개조한 장치와 기존의 상업용 시료 채취기와의 성능 비교)

  • Jang, Bong-Ki;Tak, Hyun-Wook;Song, Su-Jin;Jo, Bong-Hyun;Kim, Yeong-Ji;Son, Bu-Soon;Lee, Jong-Wha
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.24 no.4
    • /
    • pp.492-500
    • /
    • 2014
  • Objectives: The purpose of this study is to estimate the applicability of regional sample collection of environmental samples. The concentration of asbestos fibers were analyzed with two devices. One was an existing commercial air sampling pump that has been proved to be accurate and exact, and the other is a remodeled pump for sample collection which was made from an electric bubble generator originally designed for aquarium fish. Samples were collected with the two devices under the same environmental conditions and collection equipment. A comparative analysis of the concentration of ambient asbestos fiber was then performed. Methods: Based on previous research, six farmhouses with asbestos fiber slate roofs known to have high concentrations of asbestos fiber were selected. Using the existing commercial air sampling pump and the remodeled electric bubble generator, four to seven samples were collected each day one meter downwind from the edge of the slate roof at high volume (about 4 L/min) and low volume (about 1.4 L/min). The analyzer responsible for sample quality control of asbestos fibers counted the number of asbestos fibers with a phase microscope. Results: The rates of flow change of the existed sampler and the remodeled pump at high volume were 0.82% and 0.17%, respectively. The rates of flow change at low volume were 3.83% and 1.09%, but there was not significant difference. The rates of flow change are within the error range (${\pm}5%$) of OSHA analyzing methods. For the high volume sampler, the average asbestos fiber concentration in the air collected by the existed sampler is 6.270 fibers/L and for the remodeled one 5.527 fibers/L, not a significant difference. For the low volume sampler, the average asbestos fiber concentration in the air collected by the existed sampler is 7.755 fibers/L and for the remodeled one 7.706 fibers/L, not a significant difference. The total area of the slate roof of the targeted farmhouse has an effect on the concentration of asbestos fibers in the air from the existing pump and the remodeled one (p<0.01). Conclusions: The sampling function between the existing commercial pump and the remodeled one shows little difference. Therefore, the remodeled pump is considered a pump with a good availability for collecting ambient air asbestos samples.

Comparative Study on the Efficiency Test Using Remodeled Bubble Generating Pump for Aquarium Fish and Established Air Sampling Pump (관상어용 기포발생기를 개조한 시료채취 장치와 기존의 시료채취기와의 성능 비교)

  • Jang, Bong-Ki;Chun, Jae-Young;Son, Bu-Soon;Lee, Jong-Wha;Park, Jong-An
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.15 no.3
    • /
    • pp.183-191
    • /
    • 2005
  • This study is designed to compare the performance of established samplers (personal air sampler and MiniVOL portable air sampler) commonly used in the air environment or work environment with that of the sampler made by remodeling the air bubble generator for aquarium fishes. Sampling method used in this study is the filter collection method for PM10 and total suspended particles (TSP), the liquid collection method for sulfur dioxide ($SO_2$) and nitrogen dioxide ($NO_2$), and the solid collection method for toluene, respectively. There is not a significant difference in the average concentration of TSP between the Gilian personal air sampler (1st, $0.316{\pm}0.095$; 2nd $0.191{\pm}0.090$; 3rd, $0.185{\pm}0.073mg/m^3$) and the remodeled sampler (1st, $0.317{\pm}0.106$, 2nd $0.201{\pm}0.050$; 3rd $0.189{\pm}0.081mg/m^3$). There are also not significant differences in the average concentration of PM10 among the Gilian personal air sampler ($0.058{\pm}0.006mg/m^3$), the remodeled sampler ($0.052{\pm}0.008mg/m^3$) and the MiniVOL portable air sampler ($0.054{\pm}0.007mg/m^3$). The average concentration of the SO2 by the established sampler and the remodeled one is $3.79{\pm}0.21ppb$ and $3.45{\pm}0.15ppb$, respectively. In addition, there are not sigmficant differences in the average concentration of the NO2 between the Gilian personal air sampler (1st, $0.325{\pm}0.068$; 2nd $0.341{\pm}0.206$; 3rd, $2.971{\pm}0.078{\mu}g/m^3$) and the remodeled sampler (1st, $0.300{\pm}0.062$; 2nd $0.332{\pm}0.144$, 3rd, $2.968{\pm}0.085{\mu}g/m^3$). There are not significant differences in the average concentration of toluene between the Gilian personal air sampler (1st, $0.499{\pm}0.072$; 2nd $0.598{\pm}0.112$; 3rd $2.284{\pm}0.077{\mu}g/m^3$) and the remodeled sampler (1st, $0.463{\pm}0.133$; 2nd $0.603{\pm}0.082$; 3rd $2.353{\pm}0.115{\mu}g/m^3$). From these results, we can conclude that the performance of the remodeled sampler is not different from that of established samplers. There is possibility that the remodeled sampler can be used as a alternative device for Gilian personal air sampler in area and personal air sampling.