• Title/Summary/Keyword: remelting

Search Result 73, Processing Time 0.023 seconds

The Present Status of Recycling Technology of Aluminum Can (알루미늄캔의 재활용(再活用) 기술현황(技術現況))

  • Lim, Cha-Yong;Kang, Suk-Bong
    • Resources Recycling
    • /
    • v.9 no.2
    • /
    • pp.3-10
    • /
    • 2000
  • Used aluminum beverage can(UBC) is an important secondary resource. Domestic recycling rate of UBC should be increased from the standpoint of resource savings and environmental protection. Aluminum can to can recycling is divided into two steps. The first step was composed of the processes such as collection of used beverage cans, shredding, magnetic separation, de-lacquring, melting and casting. The second is remelting and casting, heat treatment, hot and cold rolling, annealing, and can making. With brief discussion about this recycling technology, this article covers aluminum can consumption, the present state of aluminum can recycling in Korea, Japan, USA, and Europe.

  • PDF

Conductive adhesive with transient liquid-phase sintering technology for high-power device applications

  • Eom, Yong-Sung;Jang, Keon-Soo;Son, Ji-Hye;Bae, Hyun-Cheol;Choi, Kwang-Seong
    • ETRI Journal
    • /
    • v.41 no.6
    • /
    • pp.820-828
    • /
    • 2019
  • A highly reliable conductive adhesive obtained by transient liquid-phase sintering (TLPS) technologies is studied for use in high-power device packaging. TLPS involves the low-temperature reaction of a low-melting metal or alloy with a high-melting metal or alloy to form a reacted metal matrix. For a TLPS material (consisting of Ag-coated Cu, a Sn96.5-Ag3.0-Cu0.5 solder, and a volatile fluxing resin) used herein, the melting temperature of the metal matrix exceeds the bonding temperature. After bonding of the TLPS material, a unique melting peak of TLPS is observed at 356 ℃, consistent with the transient behavior of Ag3Sn + Cu6Sn5 → liquid + Cu3Sn reported by the National Institute of Standards and Technology. The TLPS material shows superior thermal conductivity as compared with other commercially available Ag pastes under the same specimen preparation conditions. In conclusion, the TLPS material can be a promising candidate for a highly reliable conductive adhesive in power device packaging because remelting of the SAC305 solder, which is widely used in conventional power modules, is not observed.

The Characteristics of Continuous Waveshape Control for the Suppression of Defects in the Fiber Laser Welding of Pure Titanium Sheet (II) - The Effect According to Control of Overlap Weld Length - (순 티타늄 박판의 파이버 레이저 용접시 결함 억제를 위한 연속의 출력 파형제어 특성(II) - 중첩부 길이변화에 따른 영향 -)

  • Kim, Jong-Do;Kim, Ji-Sung
    • Journal of Welding and Joining
    • /
    • v.34 no.6
    • /
    • pp.69-74
    • /
    • 2016
  • Because the pure titanium has superior corrosion resistance and formability compared with different material, it is widely used as material of welded heat exchanger. When the welding of heat exchanger is carried out, certain area in which welding start and end are overlapped occurs. The humping of back bead is formed in the overlap area due to partial penetration. Thus in this study, the experiments were carried out by changing the length and wave shape of overlap area, and then the weldabiliay was evaluated through the observation of microstructure, the measurement of hardness and tensile-shear strength test in the overlap area. When overlap length was 9.8mm, humping bead was suppressed. The microstructure of overlap area coarsened and its hardness increased due to remelting. As a result of tensile-shear strength test in the overlap area according to applying the wave shape control, it was confirmed that the overlap area applied wave shape control had more excellent yield strength and ductility.

Effects of Salt Flux and Alloying Elements on the Coalescence Behaviour of Aluminum Droplets (알루미늄 Droplets 합체거동에 미치는 Salt Flux 및 합금원소 첨가의 영향)

  • Kim, Ye-Sik;Yoon, Eui-Pak;Kim, Ki-Tae;Jung, Woon-Jae;Jo, Duk-Ho
    • Journal of Korea Foundry Society
    • /
    • v.20 no.1
    • /
    • pp.38-45
    • /
    • 2000
  • The remelting for recycling or thin aluminum scrap, such as aluminum chip generally involves melting of these pieces submerged in molten salt flux. In this study, the effects of salt flux compositions and alloying elements on the aluminum dropletscoalescence and oxide film removal were studied in 99.8%Al, Al-1.01%Cu, Al-1.03%Si, and Al-1.38%Mg alloys as a function of holding time at $740^{\circ}C$ Salt fluxes based on NaCl-KCl(1:1) with addition of 5wt.% fluorides(NaF, $Na_3AlF_6$, $CaF_2$) or 5 wt.% chloride($MgCl_2$, $AlCl_3$) were used. The experimental results show that NaCl-KCl(1:1) with addition of 5 wt.% fluorides exhibits better coalescence ability than that with chlorides. The oxide film is not removed by NaCl-KCl(1:1) with addition of 5 wt.%chlorides, while it is removed by NaCl-KCl(1:1) with addition of 5 wt.% fluorides. The aluminum droplets coalescence and oxide film removal by salt fluxes are related to interfacial tension tension between metal and salt flux.

  • PDF

Laser Assisted Surface Alloying of Cast Iron with Thermal Sprayed Titanium Coatings (티타늄 용사피막을 이용한 주철의 레이저 표면합금화)

  • Park, Heung-Il;Kim, Sung-Gyoo;Lee, Byung-Woo
    • Journal of Korea Foundry Society
    • /
    • v.17 no.4
    • /
    • pp.393-401
    • /
    • 1997
  • Commercial flake graphite cast iron substrate was coated with titanium powder by low pressure plasma spraying and was irradiated with a $CO_2$ laser to produce the wear resistant composite layer. From the experimental results of this study, it was possible to composite TiC particles on the surface layer by direct reaction between carbon existed in the cast iron matrix and titanium with thermal sprayed coating by remelting and alloying them using laser irradiation. The cooling rate of laser remelted cast iron substrate without titanium coating was about $1{\times}10^4$ K/s to $1{\times}10^5$ K/s in the order under the condition used in this study. The microstructure of alloyed layer consisted of three zones, that is, TiC particule crystallized zone (MHV $400{\sim}500$), the mixed zone of TiC particule+ledebulite (MHV $650{\sim}900$) and the ledebulite zone (MHV $500{\sim}700$). TiC particules were crystallized as a typical dendritic morphology. The secondary TiC dendrite arms were grown to the polygonized shape and were necking. And then the separated arms became cubic crystal of TiC at the slowly solidified zone. But in the rapidly solidified zone of fusion boundry, the fine granular TiC particules were grouped like grape.

  • PDF

The recycle of titanium scrap by electron beam melting and plasma arc melting process (전자빔용해 및 플라즈마아크용해에 의한 티타늄 스크랩의 재활용)

  • Choi, Good-Sun;Park, Jong-Bum;Oh, Jung-Min;Moon, Young-Hee;Um, Tae-Kyung;Kim, Young-Suk;Kim, Young-Rog
    • Proceedings of the Korean Institute of Resources Recycling Conference
    • /
    • 2006.05a
    • /
    • pp.56-60
    • /
    • 2006
  • In 2005, the imports of titanium metals was about 22.8 million US$(7,700 tons) in Korea. New scrap produced was estimated to be 359 tons and the exports were about 352 tons. Generally scrap is recylced into titanium ingot either with or without virgin metal using traditional vacuum-arc-melting and cold hearth melting. In Korea, there is no titanium ingot producers(recyclers). In this paper, the brief summary of major titanium melting technology, such as vacuum arc remelting(VAR), electron beam melting(EBM), plasma arc melting(PAM) is given and discussed. In view of titanium market situation of Korea, the technological development of ingot production from scrap is big problem to be solved in order to realize extensive cost reduction for titanium products.

  • PDF

The Recycling Technology for Aged Aluminum Wire in Overhead Conductor (폐가공송전선 Al선재 재활용 기술개발)

  • Kim, Shang-Shu;Ku, Jae-Kwan;Lee, Young-Ho;Kim, Byung-Geol
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.7
    • /
    • pp.555-562
    • /
    • 2013
  • The new recycling technology for aged aluminum wires in overhead conductor has been carried out. The authors are attempting to develop remanufacturing method for them for more effective way of recycling in stead of its conventional remelting process. The new recycling technology for aged aluminum wire in overhead conductor was composed of four steps in different develop process, destranding process for conductor, surface cleaning process, welding process and drawing process for aluminum wire. This paper investigates the properties during recycle process of aged aluminum wire. The results of microscopic analysis and mechanical properties were discussed to underscore recycling aluminum wire. Various graphs are presented accompanied by discussion about their relevance on the process. In conclusion, we confirmed the possibility of remanufacturing technique by using new process.

Application the mechanism-based strain gradient plasticity theory to model the hot deformation behavior of functionally graded steels

  • Salavati, Hadi;Alizadeh, Yoness;Berto, Filippo
    • Structural Engineering and Mechanics
    • /
    • v.51 no.4
    • /
    • pp.627-641
    • /
    • 2014
  • Functionally graded steels (FGSs) are a family of functionally graded materials (FGMs) consisting of ferrite (${\alpha}$), austenite (${\gamma}$), bainite (${\beta}$) and martensite (M) phases placed on each other in different configurations and produced via electroslag remelting (ESR). In this research, the flow stress of dual layer austenitic-martensitic functionally graded steels under hot deformation loading has been modeled considering the constitutive equations which describe the continuous effect of temperature and strain rate on the flow stress. The mechanism-based strain gradient plasticity theory is used here to determine the position of each layer considering the relationship between the hardness of the layer and the composite dislocation density profile. Then, the released energy of each layer under a specified loading condition (temperature and strain rate) is related to the dislocation density utilizing the mechanism-based strain gradient plasticity theory. The flow stress of the considered FGS is obtained by using the appropriate coefficients in the constitutive equations of each layer. Finally, the theoretical model is compared with the experimental results measured in the temperature range $1000-1200^{\circ}C$ and strain rate 0.01-1 s-1 and a sound agreement is found.

Effects of Si Addition on the Microstructure and Properties of Cr-Al alloy for High Temperature Coating (고온 코팅용 Cr-Al합금의 미세조직 및 특성에 미치는 Si 첨가의 영향)

  • Kim, Jeong-Min;Kim, Il-Hyun;Kim, Hyun-Gil
    • Korean Journal of Materials Research
    • /
    • v.29 no.1
    • /
    • pp.7-10
    • /
    • 2019
  • Cr-Al alloys are attracting attention as oxidation resistant coating materials for high temperature metallic materials due to their excellent high temperature stability. However, the mechanical properties and oxidation resistance of Cr-Al alloys can be further enhanced, and such attempts are made in this study. To improve the properties of Cr-Al alloys, Si is added up to 5 wt%. Casting specimens with different amounts of Si content are prepared by a vacuum arc remelting method and isothermally heated under steam conditions at $1,100^{\circ}C$ for 1 hour. The as-cast microstructure of low Si alloys is mainly composed of only a Cr phase, while $Al_8Cr_5$ and $Cr_3Si$ phases are also observed in the 5 % Si alloy. In the high Si alloy, only Cr and $Cr_3Si$ phases remain after the isothermal heating at $1,100^{\circ}C$. It is found that Si additions slightly decrease the oxidation resistance of the Cr-Al alloy. However, the microhardness of the Cr-Al alloy is observed to increase with an increasing Si content.

Effect of Oxygen Content on Aging Properties of Ti-39Nb-6Zr alloy (Ti-39Nb-6Zr 합금의 산소함량에 따른 시효특성 변화)

  • Han, Chan Byeol;Lee, Dong-Geun
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.35 no.2
    • /
    • pp.88-95
    • /
    • 2022
  • Titanium alloy for bio-medical applications have been developed to reduce the toxicity of alloying elements and avoid the stress-shielding effect which is caused by relatively high elastic modulus compared to bone. Ti-39Nb-6Zr (TNZ40) alloy of elastic modulus exhibits around 40 GPa in the case of beta single phase. However, the strength of this alloy is lower than the other types of titanium alloys. Many research found that adding oxygen to beta-titanium alloys is beneficial for improving the strength through solid solution strengthening. In this study, TNZ40 ingots with addition of O were prepared by an arc remelting process (Ti-39Nb-6Zr-0.16O (wt.%), Ti-39Nb-6Zr-0.26O (wt.%)). Thermo-mechanical processing (i.e., heat treatment, cold swaging and aging heat treatment) has been performed under various conditions. Therefore, the aim of this study is to investigate the effect of oxygen content and ω phase formation on microstructure and mechanical properties.