• 제목/요약/키워드: remediation system

검색결과 224건 처리시간 0.028초

A Decision Support Methodology for Remediation Planning of Concrete Bridges

  • Rashidi, Maria;Lemass, Brett
    • Journal of Construction Engineering and Project Management
    • /
    • 제1권2호
    • /
    • pp.1-10
    • /
    • 2011
  • Bridges are critical and valuable components in any road and rail transportation network. Therefore bridge remediation has always been a top priority for asset managers and engineers, but identifying the nature of true defect deterioration and associated remediation treatments remains a complex task. Nowadays Decision Support Systems (DSS) are widely used to assist decision makers across an extensive spectrum of unstructured decision environments. The main objective of this research is to develop a requirements-driven methodology for bridge monitoring and maintenance which has the ability to assess the bridge condition and find the best remediation treatments using Simple Multi Attribute Rating Technique (SMART); with the aim of maintaining a bridge within acceptable limits of safety, serviceability and sustainability.

The Behavior of Anionic Surfactant Calfax 16L-35 in Electrokinetic Remediation

  • 양지원;이유진;박지연;김상준
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2003년도 총회 및 춘계학술발표회
    • /
    • pp.306-309
    • /
    • 2003
  • Surfactant-enhanced electrokinetic (EK) remediation is an emerging technology that can effectively remove hydrocarbons from low-permeability soils. In this study, the electrokinetic remediation using Calfax 16L-35 was conducted for the removal of phenanthrene from kaolinite. An anionic surfactant Calfax 16L-35 was used at concentrations of 5, 15, and 30g/L to enhance the solubility of phenanthrene. When the surfactant solution was applied to EK system, low electrical potential gradient was maintained because of its ions. Even when the surfactant concentration was high, the removal efficiency of phenanthrene was low After the operation, most of surfactants were remained in soil and there were few in effluent. This phenomena was observed because the migration of Calfax 16L-35 from cathode to anode was predominant over electroosmotic flow which moved in opposite direction. Therefore, the anionic surfactant Calfax 16L-35 is considered to be improper in surfactant - enhanced electrokinetic remediation.

  • PDF

Remediation of Contaminated Groundwater: Change of Paradigm for Sustainable Use

  • Lee, Jin-Yong;Lee, Kang-Kun
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제18권6호
    • /
    • pp.1-7
    • /
    • 2013
  • Groundwater development and use have been increasing in Korea causing frequent occurrences of related hazards such as groundwater level decline, land subsidence, and groundwater contamination. To tackle these groundwater problems, central and local governments have set-up and maintained many groundwater monitoring programs such as the National Groundwater Monitoring Network and the Groundwater Quality Monitoring Network, which collect very valuable data on the overall status of domestic groundwater to aid proper groundwater management. However, several problems mainly related to the remediation of contaminated groundwater remain unresolved. Recently, there have been some incidents related to the contamination of groundwater, and these have drawn the concern of the Korean people. Although groundwater contamination has been investigated in detail, actual groundwater remediation work has not yet been implemented. The remediation of the contaminated groundwater must begin immediately in order to sustain the eco-system service of clean groundwater and enhance the welfare of the Korean people.

HOLISTIC DECISION SUPPORT FOR BRIDGE REMEDIATION

  • Maria Rashidi;Brett Lemass
    • 국제학술발표논문집
    • /
    • The 4th International Conference on Construction Engineering and Project Management Organized by the University of New South Wales
    • /
    • pp.52-57
    • /
    • 2011
  • Bridges are essential and valuable elements in road and rail transportation networks. Bridge remediation is a top priority for asset managers, but identifying the nature of true defect deterioration and associated remediation treatments remains a complex task. Nowadays Decision Support Systems (DSS) are used extensively to assist in decision-making across a wide spectrum of unstructured decision environments. In this paper a requirements-driven framework is used to develop a risk based decision support model which has the ability to quantify the bridge condition and find the best remediation treatments using Multi Attribute Utility Theory (MAUT), with the aim of maintaining a bridge within acceptable limits of safety, serviceability and sustainability.

  • PDF

Effects of Plant and Soil Amendment on Remediation Performance and Methane Mitigation in Petroleum-Contaminated Soil

  • Seo, Yoonjoo;Cho, Kyung-Suk
    • Journal of Microbiology and Biotechnology
    • /
    • 제31권1호
    • /
    • pp.104-114
    • /
    • 2021
  • Petroleum-contaminated soil is considered among the most important potential anthropogenic atmospheric methane sources. Additionally, various rhizoremediation factors can affect methane emissions by altering soil ecosystem carbon cycles. Nonetheless, greenhouse gas emissions from soil have not been given due importance as a potentially relevant parameter in rhizoremediation techniques. Therefore, in this study we sought to investigate the effects of different plant and soil amendments on both remediation efficiencies and methane emission characteristics in diesel-contaminated soil. An indoor pot experiment consisting of three plant treatments (control, maize, tall fescue) and two soil amendments (chemical nutrient, compost) was performed for 95 days. Total petroleum hydrocarbon (TPH) removal efficiency, dehydrogenase activity, and alkB (i.e., an alkane compound-degrading enzyme) gene abundance were the highest in the tall fescue and maize soil system amended with compost. Compost addition enhanced both the overall remediation efficiencies, as well as pmoA (i.e., a methane-oxidizing enzyme) gene abundance in soils. Moreover, the potential methane emission of diesel-contaminated soil was relatively low when maize was introduced to the soil system. After microbial community analysis, various TPH-degrading microorganisms (Nocardioides, Marinobacter, Immitisolibacter, Acinetobacter, Kocuria, Mycobacterium, Pseudomonas, Alcanivorax) and methane-oxidizing microorganisms (Methylocapsa, Methylosarcina) were observed in the rhizosphere soil. The effects of major rhizoremediation factors on soil remediation efficiency and greenhouse gas emissions discussed herein are expected to contribute to the development of sustainable biological remediation technologies in response to global climate change.

동전기정화 및 투수성반응 복합기술에 의한 오염지반의 복원 (Remediation of contaminated soil by the coupled technique of electrokinetic method and permeable reactive method)

  • 정하익;이명호
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2006년도 춘계 학술발표회 논문집
    • /
    • pp.348-351
    • /
    • 2006
  • This paper presents preliminary laboratory investigations on the electrokinetic (EK) remediation coupled with permeable reactive barrier (PRB) system. Atomizing slag was adopted as a PRB reactive material for remediation of groundwater contaminated with inorganic and/or organic substances. A series of laboratory experiments were performed with variable conditions such as (i) type of contaminant, (ii) applied electric field strength, (iii) processing time, and (iv) the application of PRB system. From the preliminary investigations, the coupled technology of EK with PRB system would be effective to remediate contaminated grounds without the extraction of pollutants from subsurface due to the reactions between the reactive materials and contaminants.

  • PDF

연직배수재를 이용한 토양세정시스템의 오염토양정화 특성 (The Characteristics of Soil Remediation by Soil Flushing System Using PVDs)

  • 박정준
    • 한국환경복원기술학회지
    • /
    • 제10권5호
    • /
    • pp.76-86
    • /
    • 2007
  • For the purpose of ground improvement by means of soil flushing systems. Incorporated technique with prefabricated vertical drains have been used for dewatering from fine-grained soils. The laboratory model tests were performed by using the flushing tracer solutions for silty soils and recorded the tracer concentration changes with the elapsed time and flow rates. A mathematical model for prediction of contaminant transport using the PVD technology has been developed. The clean-up times for the predictions on both soil condition indicate more of a sensitivity to the dispersivity parameter than to the extracted flow rate and vertical velocity parameters. Based on the results of the analyses, numerical analysis indicate that the most important factor to the in-situ soil remediation in prefabricated vertical drain system is the effective diameter of contaminated soil.

마이크로버블 오존 산화제와 공압파쇄 장치를 연계 적용한 지중 화학적 산화법의 정화효율 평가 (Evaluation of Remediation Efficiency of In-Situ Chemical Oxidation Technology Applying Micro Bubble Ozone Oxidizer Coupled with Pneumatic Fracturing Equipment)

  • 오승택;오참뜻;김국진;석소희;김철경;임진환;유재봉;장윤영
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제17권4호
    • /
    • pp.44-50
    • /
    • 2012
  • A new type of chemical oxidation technology utilizing micro bubble ozone oxidizer and a pneumatic fracturing equipment was developed to enhance field applicability of a traditional chemical oxidation technology using hydrogen peroxide as an oxidizer for in-situ soil remediation. To find an efficient way to dissolve gaseous ozone into hydrogen peroxide, ozone was injected into water as micro bubble form then dissolved ozone concentration and its duration time were measured compared to those of simple aeration of gaseous ozone. As a result, dissolved ozone concentration in water increased by 31% (1.6 ppm ${\rightarrow}$ 2.1 ppm) and elapsed time for which maximum ozone concentration decreased by half lengthened from 9 min to 33 min. When the developed pneumatic fracturing technology was applied in sandy loam, cracks were developed and grown in soil for 5~30 seconds so that the radius of influence got longer by 71% from 392 cm to 671 cm. The remediation system using the micro bubble ozone oxidizer and the pneumatic fracturing equipment for field application was made and demonstrated its remediation efficiency at petroleum contaminated site. The system showed enhanced remediation capacity than the traditional chemical oxidation technology using hydrogen peroxide with reduced remediation time by about 33%.

Electrokinetic Soil Flushing with Nonionic Surfactant for Removal of Phenanthrene

  • 이유진;박지연;김상준;기대정;양지원
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2003년도 추계학술발표회
    • /
    • pp.356-359
    • /
    • 2003
  • Polycyclic aromatic hydrocarbons (PAHs) are representative hydrophobic organic carbons (HOCs). Surfactant-enhanced electrokinetic (EK) remediation is an innovative in-situ technology that can effectively remove HOCs from low-permeability soils. In this study, the electrokinetic remediation using Tergitol 15-S-12, a nonionic surfactant, was conducted for the removal of phenanthrene from kaolinite. Tergitol 15-S-12 was used at concentrations of 1.5, 2.0, 2.5 and 7.5 g/L to enhance the solubility of phenanthrene. When the surfactant solution was applied to EK system, high electrical potential gradient was maintained and the amount of electroosmotic flow decreased. Removal efficiency of phenanthrene was proportional to the concentration of Tergitol 15-S-12 because the solubility and mobility of phenanthrene was enhanced by surfactant micelle. Therefore, the suitable concentration of nonionic surfactant Tergitol 15-S-12 is expected to improve the removal efficiency of PAHs in EK remediation.

  • PDF

동전기적 추출에 의한 비위생매립지 주변 오염지반의 정화 (Electrokinetic Extraction of Pollutants from the Vicinity of Unregulated Landfill Site)

  • 이명호;정하익
    • 한국지반신소재학회논문집
    • /
    • 제5권2호
    • /
    • pp.17-22
    • /
    • 2006
  • 비위생매립지(非衛生埋立地)의 설치는 매립지 주변의 지반오염에 심각한 영향을 미친다. 동전기정화기법(動電氣淨化技法, Eelectrokinetic Remediation Technology)은 주로 무기오염물질에 의해 오염된 저투수성(低透水性)지반의 정화에, 투수성반응벽체(透水性反應壁體, Permeable Reactive Barrier)는 주로 지하수 내의 유기오염물질의 분해 등에 각각 효과적이다. 본 연구에서는 동전기정화기법과 투수성반응벽체의 장점을 복합적으로 비위생매립지 주변의 오염현장에 적용하여 정화효과를 조사하였다. 환경오염원이자 폐기물인 제강슬래그를 재활용한 오토마이징슬래그(Atomizing Slag)를 투수성반응벽체의 반응물질로 이용하였다. 현장적용 실험결과, 동전기정화기법과 투수성반응벽체의 장점을 복합적으로 적용한 EK & PRB System(EPS)이 원위치(原位置, In-Situ) 정화효율을 높여줌을 알 수 있었다.

  • PDF