• Title/Summary/Keyword: remaining service life

Search Result 96, Processing Time 0.024 seconds

Analysis of Insulation Characteristic for Small Hydro Generator (소수력발전기 절연특성분석)

  • Oh, Bong-Keun;Chang, Jeong-Ho;Lee, Kwang-Ho;Kang, Dong-Sik
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.142-145
    • /
    • 2008
  • Electrical insulation of small hydro generator stator winding is one of the most important parts in generator facilities. Some stator winding insulation problems can be identified through analysis of insulation diagnostic test. So, Diagnosis of stator winding insulation is an important measure of ensuring the safe operation and extending the remaining life of small hydro generator. This paper presents case studies of insulation failure in generator stator windings and the results of insulation diagnostic test for small hydro generator stator windings. Especially, Conducting the insulation diagnostic test before the generator installed in site is very important process to keep the good insulation condition in service.

  • PDF

A Study on Fatigue Damage Modeling Using Back-Propagation Neural Networks (역전파신경회로망을 이용한 피로손상모델링에 관한 연구)

  • 조석수;장득열;주원식
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.6
    • /
    • pp.258-269
    • /
    • 1999
  • It is important to evaluate fatigue damage of in-service material in respect to assure safety and remaining fatigue life in structure and mechanical components under cyclic load . Fatigue damage is represented by mathematical modelling with crack growth rate da/dN and cycle ration N/Nf and is detected by X-ray diffraction and ultrasonic wave method etc. But this is estimated generally by single parameter but influenced by many test conditions The characteristics of it indicates fatigue damage has complex fracture mechanism. Therefore, in this study we propose that back-propagation neural networks on the basis of ration of X-ray half-value breath B/Bo, fractal dimension Df and fracture mechanical parameters can construct artificial intelligent networks estimating crack growth rate da/dN and cycle ratio N/Nf without regard to stress amplitude Δ $\sigma$.

  • PDF

Stochastic value index for seismic risk management of existing lifelines

  • Koike, Takeshi;Imai, Toshio
    • Structural Engineering and Mechanics
    • /
    • v.32 no.1
    • /
    • pp.147-165
    • /
    • 2009
  • This study proposes a certain measure or investment strategy for decision making associated with seismic retrofitting. This strategy reduces the risk of a large-scale malfunction such as water supply loss under seismic risks. The authors developed a stochastic value index that will be used in the overall evaluation of social benefit, income gain, life cycle costs and failure compensation associated with existing lifeline systems damaged by an earthquake during the remaining service period. Optimal seismic disaster prevention investment of deteriorated lifeline systems is discussed. Finally, the present study provides a performance-based design method for seismic retrofitting strategies of existing lifelines which are carried out using the target probabilities of value loss and structural failure.

Buckling capacity of uniformly corroded steel members in terms of exposure time

  • Rahgozar, Reza;Sharifi, Yasser;Malekinejad, Mohsen
    • Steel and Composite Structures
    • /
    • v.10 no.6
    • /
    • pp.475-487
    • /
    • 2010
  • Most of steel structures in various industries are subjected to corrosion due to environmental exposure. Corrosion damage is a serious problem for these structures which may reduce their carrying capacity. These aging structures require maintenance and in many cases, replacement. The goal of this research is to consider the effects of corrosion by developing a model that estimates corrosion loss as a function of exposure time. The model is formulated based on average measured thickness data collected from three severely corroded I-beams (nearly 30 years old). Since corrosion is a time-dependent parameter. Analyses were performed to calculate the lateral buckling capacity of steel beam in terms of exposure time. Minimum curves have been developed for assessment of the remaining lateral buckling capacity of ordinary I-beams based on the loss of thicknesses in terms of exposure time. These minimum curves can be used by practicing engineers for better estimates on the service life of corrosion damaged steel beams.

Analytical Deterioration Modelling for Recarbontion of Repaired Concrete (보수된 콘크리트의 재탄산화 열화에 대한 분석적 모델)

  • Do, Jeong-Yun;Kim, Doo-Kie;Song, Hun;Jo, Young-Kug
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.217-218
    • /
    • 2010
  • This study presented the analytical evaluation model effective in the concrete structure repaired with a patching material. The model considered the effect of the repair material on carbon dioxide penetration into the repaired concrete as evaluating the remaining service life of the CO2-deteriorated concrete structure after repair. The diffusion profiles of carbon dioxide as well as the carbonated concrete were effectively able to be modelled with analytical method based on Fick's 1st diffusion law.

  • PDF

Evaluation of Material Degradation Using Electrical Resistivity Method (전기비저항법을 이용한 재료열화 평가)

  • Kim, Jeong-Pyo;Bae, Bong-Kook;Kim, Dong-Joong;Seok, Chang-Sung
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.129-136
    • /
    • 2001
  • The remaining life estimation for the aged components in power plants as well as chemical plants are very important beacuse mechanical properties of the components are degraded with time of service exposure in high temperature. Since it is difficult to take specimens from the operating components to evaluate mechanical properties of components, nondestructive techniques are needed to estimate the degradation. In this study, test materials with 4 different degradation levels were prepared by isothermal aging heat treatment at $630^{\circ}C$. And the DC potential drop method and destructive methods such as tensile, $K_{IC}$ and hardness tests were used in order to evaluate the degradation of 1Cr-1Mo-0.25V steels. The objective of this study is to investigate the possibility of the application of DCPD method to estimate the material degradation, and to analyse the relationship between the electrical resistivity and the degree of material degradation.

  • PDF

A Study on Degradation Behavior of 1Cr-1Mo-0.25V Steel (1Cr-1Mo-0.25V 강의 열화거동에 관한 연구)

  • 석창성;구재민;김동중;안하늘;박은수
    • Journal of the Korean Society of Safety
    • /
    • v.15 no.4
    • /
    • pp.8-14
    • /
    • 2000
  • The remaining life estimation for the aged components in power plants as well as chemical plants are very important because mechanical properties of the components are degraded with time of service exposure in the high temperature. Since it is difficult to take specimens from the operating components to evaluate mechanical properties of components, accelerated aging technique are needed to estimate and analyse the material degradation. In the this study, test materials with 4 different degradation levels were prepared by isothermal aging heat treatment at $630^{\circ}C$. And tensile test, $k_{IC}$ test, hardness test and Scanning Electron Microscope analysis were performed in order to evaluate the degradation of 1Cr-1Mo-0.25V steels.

  • PDF

A Study for Fatigue Crack Propagation Behavior of KS50N Rail Steel under Welding Line (KS50N Rail 용접부의 피로균열 성장거동)

  • 박제용;지용찬;김진성;정경희
    • Proceedings of the KSR Conference
    • /
    • 1998.11a
    • /
    • pp.553-559
    • /
    • 1998
  • This thesis studied to evaluate the fatigue behavior and propagation of rail steel under welding line. Test of crack growth was performed by all member of rail under constant amplitude loading at the structures laboratory in Hongik University. The effect of the following parameters with initiated crack length on the bottom edge of rail were studied. Here, fracture mechanics mode is opening mode. and Testing Material is KS50N Rail. From analysis and experimented result on the three Point bending in the lab, This paper presented a effect of crack growth , shape and remaining service life. Further more, according to the variable crack length, variable section and the ratio of section the fatigue behavior and propagation were studied.

  • PDF

Vehicle-bridge coupling vibration analysis based fatigue reliability prediction of prestressed concrete highway bridges

  • Zhu, Jinsong;Chen, Cheng;Han, Qinghua
    • Structural Engineering and Mechanics
    • /
    • v.49 no.2
    • /
    • pp.203-223
    • /
    • 2014
  • The extensive use of prestressed reinforced concrete (PSC) highway bridges in marine environment drastically increases the sensitivity to both fatigue-and corrosion-induced damage of their critical structural components during their service lives. Within this scenario, an integrated method that is capable of evaluating the fatigue reliability, identifying a condition-based maintenance, and predicting the remaining service life of its critical components is therefore needed. To accomplish this goal, a procedure for fatigue reliability prediction of PSC highway bridges is proposed in the present study. Vehicle-bridge coupling vibration analysis is performed for obtaining the equivalent moment ranges of critical section of bridges under typical fatigue truck models. Three-dimensional nonlinear mathematical models of fatigue trucks are simplified as an eleven-degree-of-freedom system. Road surface roughness is simulated as zero-mean stationary Gaussian random processes using the trigonometric series method. The time-dependent stress-concentration factors of reinforcing bars and prestressing tendons are accounted for more accurate stress ranges determination. The limit state functions are constructed according to the Miner's linear damage rule, the time-dependent S-N curves of prestressing tendons and the site-specific stress cycle prediction. The effectiveness of the methodology framework is demonstrated to a T-type simple supported multi-girder bridge for fatigue reliability evaluation.

Stochastic modelling fatigue crack evolution and optimum maintenance strategy for composite blades of wind turbines

  • Chen, Hua-Peng;Zhang, Chi;Huang, Tian-Li
    • Structural Engineering and Mechanics
    • /
    • v.63 no.6
    • /
    • pp.703-712
    • /
    • 2017
  • The composite blades of offshore wind turbines accumulate structural damage such as fatigue cracking due to harsh operation environments during their service time, leading to premature structural failures. This paper investigates various fatigue crack models for reproducing crack development in composite blades and proposes a stochastic approach to predict fatigue crack evolution and to analyse failure probability for the composite blades. Three typical fatigue models for the propagation of fatigue cracks, i.e., Miner model, Paris model and Reifsnider model, are discussed to reproduce the fatigue crack evolution in composite blades subjected to cyclical loadings. The lifetime probability of fatigue failure of the composite blades is estimated by stochastic deterioration modelling such as gamma process. Based on time-dependent reliability analysis and lifecycle cost analysis, an optimised maintenance policy is determined to make the optimal decision for the composite blades during the service time. A numerical example is employed to investigate the effectiveness of predicting fatigue crack growth, estimating the probability of fatigue failure and evaluating an optimal maintenance policy. The results from the numerical study show that the stochastic gamma process together with the proper fatigue models can provide a useful tool for remaining useful life predictions and optimum maintenance strategies of the composite blades of offshore wind turbines.