• Title/Summary/Keyword: reliability qualification test

Search Result 62, Processing Time 0.031 seconds

Analysis of Maximum Generating Power Drop of PV Module Under the Continuous Artificial Light Irradiation Test Condition (연속 광조사 조건에서의 태양전지모듈의 연간 최대출력 저하율 변화 예측 분석)

  • Kim, Kyungsoo;Yun, Jaeho
    • Current Photovoltaic Research
    • /
    • v.6 no.3
    • /
    • pp.69-73
    • /
    • 2018
  • PV system is consisted with PV module, inverter and BOS(balance of system). To have robustic operation more than 20 years, the expected and guaranteed durability and reliability of products should be met. Almost components of PV system are qualified through IEC standards at test laboratory. But the qualification certificate of product does not ensure long-term nondefective operation. PV module's expected life time is nowadays more than 20 years and annual maximum power degradation ratio would be less than -1%. But the power degradation ratio is basically based on real data more than several years' record. Developing test method for ensuring annual maximum power degradation ratio is very need because there are many new products every month with new materials. In this paper, we have suggested new test method under continuous artificial light irradiation test condition for analyze expected maximum power drop ratio.

Utilizing virtual vibration tests to optimize physical endurance tests

  • Kihm, Frederic
    • Advances in aircraft and spacecraft science
    • /
    • v.5 no.2
    • /
    • pp.239-249
    • /
    • 2018
  • Physical tests are performed at various stages of the development cycle of a product, from prototype validation to product qualification. Although costly, there are growing demands for qualification tests like endurance vibration testing to be more representative of the real world. At the same time there are growing demands to assess the durability of these items based on FEA simulation. In this paper, we will explain how to set up a CAE-based test and how to correlate the results with some physical measurements. Specific assumptions will be explained and some advantages of using virtual tests will be highlighted such as the reduction of the number of prototypes needed, investigations on failures, evaluation of the level of reliability via sensitivity analysis, evaluation of the margins are at the end of a successful test. This presentation will therefore focus on explaining and showing how virtual tests can enrich the exploitation of physical tests.

Experimental Assessment of PBGA Packaging Reliability under Strong Random Vibrations (강력한 임의진동 하에서 PBGA 패키지의 실험적 신뢰성 검증)

  • Kim, Yeong K.;Hwang, Dosoon
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.20 no.3
    • /
    • pp.59-62
    • /
    • 2013
  • Experimental analyses on the solder joint reliability of plastic ball grid array under harsh random vibration were presented. The chips were assembled on the daisy chained circuit boards for the test samples preparation, half of which were processed for underfill to investigate the underfill effects on the solder failures. Acceptance and qualification levels were applied for the solder failure tests, and the overall controlled RMS of the power spectrum densities of the steps were 22.7 Grms and 32.1 Grms, respectively. It was found that the samples survived without any solder failure during the tests, demonstrating the robustness of the packaging structure for potential avionics and space applications.

Evaluation of Reliability for Welded thick steel joint (후판 강용접부의 신뢰성 평가)

  • 최원두;이영호;길두송;박상기
    • Proceedings of the KWS Conference
    • /
    • 2004.05a
    • /
    • pp.327-329
    • /
    • 2004
  • Reliability evaluation of the welded structure for industrial structures/facilities such as power plant and petro-chemical refinery facilities is very important, and especially the reliability diagnosis of the structure is based on the exact evaluation of materials properties. But, the conventional Pre-Qualification test had the difficulty of evaluating the real material properties in the field because the test was made on the specimen with the simulated welding for the in-field welding condition. Therefore, a continuous indentation technique was proposed for simple and non-destructive testing of in-field structures and for selective testing of local range such as heat affected zone and weldment.

  • PDF

Reliability Evaluation of Concentric Butterfly Valve Using Statistical Hypothesis Test (통계적 가설검정을 이용한 중심형 버터플라이 밸브의 신뢰성 평가)

  • Chang, Mu-Seong;Choi, Jong-Sik;Choi, Byung-Oh;Kim, Do-Sik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.12
    • /
    • pp.1305-1311
    • /
    • 2015
  • A butterfly valve is a type of flow-control device typically used to regulate a fluid flow. This paper presents an estimation of the shape parameter of the Weibull distribution, characteristic life, and $B_{10}$ life for a concentric butterfly valve based on a statistical analysis of the reliability test data taken before and after the valve improvement. The difference in the shape and scale parameters between the existing and improved valves is reviewed using a statistical hypothesis test. The test results indicate that the shape parameter of the improved valve is similar to that of the existing valve, and that the scale parameter of the improved valve is found to have increased. These analysis results are particularly useful for a reliability qualification test and the determination of the service life cycles.

원격측정명령처리기 성능검증모델 개발

  • Kim, Joong-Pyo;Koo, Cheol-Hea;Choi, Jae-Dong;Chae, Jong-Won;Kim, Jung-Hoon;Koo, Ja-Chun
    • Aerospace Engineering and Technology
    • /
    • v.4 no.1
    • /
    • pp.86-94
    • /
    • 2005
  • This paper shows the results of design, analysis, manufacturing and test performed to develop the CTU(Command Telemetry Unit) EQM(Engineering Qualification Model). According to the key requirement specifications, the logics and circuits of each board are designed. In order to validate designs, some worst case, part stress, reliability, FMECA, radiation environment and launch environment analyses are performed. After manufacturing and assembling all boards, all functions of CTU EQM are verified through the functional test, environmental test and ETB test.

  • PDF

Study of Life Prediction and Failure Mechanisms of Cramic Heater for Home Appliance (가전 제품용 세라믹 히터의 수명 및 고장 원인에 대한 연구)

  • Choi, Hyoungseuk
    • Journal of Applied Reliability
    • /
    • v.17 no.4
    • /
    • pp.355-361
    • /
    • 2017
  • Purpose: The purpose of this research is to establish the life test method for ceramic heater and identify the failure mechanisms. Methods: We do accelerated life test in the condition of thermal shock and failure analysis for failed samples. Conclusion: The main failure mechanisms of ceramic heater are identified as overstress failure mechanisms as results of failure analysis and the shape parameters of weibull distribution by accelerated life test are identified as 0.8, 1.2 and 0.4 each at $400^{\circ}C$, $600^{\circ}C$ and $900^{\circ}C$. At $900^{\circ}C$, the shape parameter 0.4 means that It is exactly initial failure caused that the stress exceeds the strength of ceramic heater highly and the shape parameters 0.8, 1.2 at $400^{\circ}C$, $600^{\circ}C$ means that the shape parameters are around 1.0 so that the main failure mechanism is overstress failure which is same result as failure analysis. It means that the appropriate life test method for ceramic heater is reliability qualification test method rather than accelerated life test.

A Study on the Rectifying Inspection Plan & Life Test Sampling Plan Considering Cost (소비자 보호를 위한 선별형 샘플링 검사와 신뢰성 샘플링 검사의 최적설계에 관한 연구)

  • 강보철;조재립
    • Journal of Korean Society for Quality Management
    • /
    • v.30 no.1
    • /
    • pp.74-96
    • /
    • 2002
  • The objectives of this study is to suggest the rectifying sampling inspection plan considering quality cost. Limiting quality level(LQL) plans(also called LTPD plans) and outgoing quality(OQ) plans are considered. The Hald's linear cost model is discussed with and without a beta prior for the distribution of the fraction of nonconforming items in a lot. It is assumed that the sampling inspection is error free. We consider the design of reliability acceptance sampling plan (RASP) for failure rate level qualification at selected confidence level. The lifetime distribution of products is assumed to be exponential. MIL-STD-690C and K C 6032 standards provide this procedures. But these procedures have some questions to apply in the field. The cost of test and confidence level(1-$\beta$ risk) are the problem between supplier and user. So, we suggest that the optimal life test sampling inspection plans using simple linear cost model considering product cost, capability of environment chamber, environmental test cost, and etc. Especially, we consider a reliability of lots that contain some nonconforming items. In this case we assumed that a nonconforming item fail after environmental life test. Finally, we develope the algorithm of the optimal sampling inspection plan based on minimum costs for rectifying inspection and RASP. And computer application programs are developed So, it is shown how the desired sampling plan can be easily found.

Thermal Vacuum Test and Thermal Analysis for a Qualification Model of Cube-satellite STEP Cube Lab. (큐브위성 STEP Cube Lab.의 임무 탑재체 인증모델의 열진공시험 및 열모델 보정을 통한 궤도 열해석)

  • Kang, Soo-Jin;Ha, Heon-Woo;Han, Sung-Hyun;Seo, Joung-Ki;Oh, Hyun-Ung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.2
    • /
    • pp.156-164
    • /
    • 2016
  • Qualification model(QM) of main payloads including concentrating photovoltaic system using fresnel lens, heating wire cutting type shockless holding and release mechanism, and MEMS-based solid propellant thruster have been developed for the STEP Cube Lab.(Cube Laboratory for Space Technology Experimental Project), which is a pico-class satellite for verification of core space technologies. In this study, we have verified structural safety and functionality of the developed payloads under a qualification temperature range through the QM thermal vacuum test. Additionally, a reliability of thermal model of the payloads has been confirmed by performing a thermal correlation based on the thermal balance test results.

Application of Continuous Indentation Technique for Reliability Evaluation in Power Plant Facilities (발전설비 주요배관 신뢰도 확보를 위한 연속압입시험 적용)

  • Park, Sang-Ki;Ahn, Yeon-Shik;Jung, Gye-Jo;Cho, Yong-Sang;Choi, Yeol
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.24 no.2
    • /
    • pp.158-162
    • /
    • 2004
  • Reliability of welded structures in power plant facilities is very important, and their reliability evaluation requires exact materials properties. But, the conventional PQR (Procedure Qualification Record) can hardly reflect the real material properties in the field because the test is only done on specimens with simulated welding. Therefore, a continuous indentation technique is proposed in this study for simple and non-destructive testing of in-field structures. This test measures the indentation load-depth curve during indentation and analyzes the mechanical properties such as the yield strength, tensile strength and work hardening index. This technique has been applied to evaluate the tensile properties of the weldment in the main steam pipe and hot reheater pipe in power plants under construction and in operation.