• Title/Summary/Keyword: relay systems

Search Result 735, Processing Time 0.027 seconds

Power Allocation for OFDM-Based Cooperative Relay Systems

  • Wu, Victor K. Y.;Li, Ye (Geoffrey);Wylie-Green, Marilynn P.;Reid, Tony;Wang, Peter S. S.
    • Journal of Communications and Networks
    • /
    • v.10 no.2
    • /
    • pp.156-162
    • /
    • 2008
  • Cooperative relays can provide spatial diversity and improve performance of wireless communications. In this paper, we study subcarrier power allocation at the relays for orthogonal frequency division multiplexing (OFDM)-based wireless systems. For cooperative relay with amplify-and-forward (AF) and decode-and-forward (DF) algorithms, we investigate the impact of power allocation to the mutual information between the source and destination. From our simulation results on word~error-rate (WER) performance, we find that the DF algorithm with power allocation provides better performance than that of AF algorithm in a single path relay network because the former is able to eliminate channel noise at each relay. For the multiple path relay network, however, the network structure is already resistant to noise and channel distortion, and AF approach is a more attractive choice due to its lower complexity.

Echo Cancellation in Relay Systems (Full Duplex 릴레이 시스템에서의 자기 신호 제거)

  • Woo, Choong-Chae;Ju, Hyung-Sik
    • Journal of IKEEE
    • /
    • v.16 no.2
    • /
    • pp.76-80
    • /
    • 2012
  • We propose a new relay system which use echo cancellation in relay station. In the proposed relay system, a half of time resource is required to transmit a symbol compared to conventional relay system. We show the echo cancellation method and frame structure of the proposed system. Simulation result shows that the proposed system has twice capacity than that of the conventional system.

Performance Comparison of Relay Selection Methods for Incremental Cooperative Relaying Systems with Spatially Random Relay (랜덤한 릴레이를 갖는 추가 기회전송 협동 릴레이 시스템의 릴레이 선택법에 따른 성능비교)

  • Kim, Nam-Soo
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.16 no.3
    • /
    • pp.65-71
    • /
    • 2016
  • Cooperative relaying systems have been studied actively to improve the system performance effectively in wireless fading channels. Most of the cooperative relay studies are assumed fixed relay, recently the performance analysis of the cooperative relaying systems with spatially random relays considering the practical mobile environment are introduced. However the comparative studies for relay selection methods of incremental cooperative relay systems, the performance of which is influenced by the selection methods, have not been studied. Therefore we derive the performance of the system which has MRC(Maximal-ratio combining) with Max SNR(signal-to-noise ratio) selection or Max-min SNR selection, respectively. And the outage performances of the system with Max or Max-min selection method are compared for different transmit power allocation to the source and to the relays. The analytical results serve as useful tools for relay selection and power allocation to transmit nodes for opportunistic incremental relaying systems.

A Study On the EMFG Representation of the Relay Circuits and Ladder Diagram

  • Kim, Hee-Jung;Paek, Hyung-Goo;Yeo, Jeong-Mo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.124.4-124
    • /
    • 2001
  • It needs a skillful experience to design and implement sequential circuits with a relay circuit or LD (Ladder Diagram). One makes out the operation of relay contacts sequentially in case of analyzing a relay circuit or LD. Still more, the design and analyzing of a complex relay circuit or LD are difficult. In this paper, we propose the EMFG (Extended Mark Graph) representation on relay circuits and LD.

  • PDF

The Relay Circuit to EMFG Conversion with a Box´s Characteristic Equation

  • Goo, Paek-Hyung;Mo, Yeo-Jeong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.60.5-60
    • /
    • 2001
  • It is very difficult to design and analyze the relay circuit because one have to consider and analyze in order the behavior in which the relay contacts. In this paper, we propose the relay circuit to EMPG (Extended Mark Flow Graph) convension with a box´s characteristic equation. It will give you a lot of benefits in case of analysis and check of the relay circuit to convert the relay circuit into EMPG.

  • PDF

Dynamic Characteristics Test and Test Model Establish on Double Circuit for Protective Relay Test Using Real Time Digital Simulator (송전선보호계전기 시험을 위한 RTDS센서의 2회선 송전선로 Model구축 및 동특성시험)

  • Jung, Chang-Ho;Lee, Jae-Gyu;Yoon, Nam-Seon;Ahn, Bok-Shin;Kim, Sok-Il
    • Proceedings of the KIEE Conference
    • /
    • 1997.07c
    • /
    • pp.1038-1040
    • /
    • 1997
  • This paper describes dynamic characteristics test of distance relay and current differential relay using Real Time Digital Simulator on double circuit transmission line. First, The double circuit T/L modeling on RTDS was proposed and the results from the proposed model were compared with those of PSS/E. This comparison shows the possibility of dynamic test using the RTDS. The relay included about 20 test items which are apt to include maloperation of protective relays in critical situations.

  • PDF

The Relay Circuits Translation to EMFGs (릴레이 회로의 확장된 마크흐름선도 변환)

  • 여정모;백형구
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.11
    • /
    • pp.952-957
    • /
    • 2003
  • We propose how to translate relay circuits to the EMFGs(Extended Mark Flow Graphs) formally and analyze the original one by using the mark flow of it. Firstly, the concepts of the output condition, the output-on condition and the output-off condition are introduced in the relay circuits. These can be used to find the structure and the operation of respective relay outputs but the sequential operations of them cannot be obtained from these. Secondly, a relay circuit is translated to the corresponding EMFG as the all output-on conditions and all output-off conditions of it are translated to EMFGs. For the adequate translation, the condition arc and the concepts of the generation transition and the degeneration transition are introduced, and the duality for the simplification of the result. Thirdly, we analyze the operation of the original circuit by analyzing the mark flow of the resulting EMFG. We can achieve easy and fast analysis based on the EMFG's operation algorithm. Finally, we apply these to the relay circuit for an electric furnace and analyze its operation with the mark flow of the resulting EMFG. The formal translation from relay circuits to EMFGs makes the analysis easy so that these results can be used to design, modelling, the fault detection and the maintenance.

Discrete-Time Gaussian Interfere-Relay Channel

  • Moon, Kiryang;Yoo, Do-Sik;Oh, Seong-Jun
    • Journal of Communications and Networks
    • /
    • v.18 no.3
    • /
    • pp.299-310
    • /
    • 2016
  • In practical wireless relay communication systems, non-destination nodes are assumed to be idle not receiving signals while the relay sends messages to a particular destination node, which results in reduced bandwidth efficiency. To improve the bandwidth efficiency, we relax the idle assumption of non-destination nodes and assume that non-destination nodes may receive signals from sources. We note that the message relayed to a particular node in such a system gives rise to interference to other nodes. To study such a more general relay system, we consider, in this paper, a relay system in which the relay first listens to the source, then routes the source message to the destination, and finally produces interference to the destination in sending messages for other systems. We obtain capacity upper and lower bounds and study the optimal method to deal with the interference as well as the optimal routing schemes. From analytic results obtained, we find the conditions on which the direct transmission provides higher transmission rate. Next, we find the conditions, by numerical evaluation of the theoretical results, on which it is better for the destination to cancel and decode the interference. Also we find the optimal source power allocation scheme that achieves the lower bound depending on various channel conditions. We believe that the results provided in this paper will provide useful insights to system designers in strategically choosing the optimal routing algorithms depending on the channel conditions.

Channel Selective Relay-based Multiple-Input SC-FDMA/OFDMA Transmission System (채널 선택형 릴레이 기반 다중 입력 SC-FDMA/OFDMA 전송 시스템)

  • Won, Hui-Chul;Kim, Soon-Cheol
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.14 no.5
    • /
    • pp.1-9
    • /
    • 2009
  • Relay-assisted multiple input technique has become a promising candidate for next generation broadband wireless communications. In this paper, we propose channel selective relay-based multiple input transmission system. In the proposed system, single carrier frequency division multiple access (SC-FDMA) and orthogonal frequency division multiple access (OFDMA) are adopted for uplink and downlink transmissions, respectively. The performance of relay-based system can be improved by using the subcarriers selectively based on the channel condition between relay station (RS) and mobile station, or between RS and base station. Simulation results show that the proposed relay-based system considerably outperforms the conventional relay-based system.

Performance Comparison of Orthogonal and Non-orthogonal AF Protocols in Cooperative Relay Systems

  • Bae, Young-Taek;Jung, Sung-Kyu;Lee, Jung-Woo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.4
    • /
    • pp.1026-1040
    • /
    • 2012
  • For a single relay channel, we compare the capacity of two different amplify-and-forward (AF) protocols, which are orthogonal AF (OAF) and non-orthogonal AF (NAF). The NAF protocol has been proposed to overcome a significant loss of performance of OAF in the high spectral efficiency region, and it was also theoretically proved that NAF performs better than OAF in terms of the diversity-multiplexing tradeoff. However, existing results have been evaluated at the asymptotically high signal to noise ratio (SNR), thus the power allocation problem between the source and the relay was neglected. We examine which protocol has better performance in a practical system operating at a finite SNR. We also study where a relay should be located if we consider the power allocation problem. A notable conclusion is that the capacity performance depends on both SNR and power allocation ratio, which indicates OAF may perform better than NAF in a certain environment.