• Title/Summary/Keyword: relay selection algorithm

Search Result 66, Processing Time 0.032 seconds

Relay Selection Scheme Based on Quantum Differential Evolution Algorithm in Relay Networks

  • Gao, Hongyuan;Zhang, Shibo;Du, Yanan;Wang, Yu;Diao, Ming
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.7
    • /
    • pp.3501-3523
    • /
    • 2017
  • It is a classical integer optimization difficulty to design an optimal selection scheme in cooperative relay networks considering co-channel interference (CCI). In this paper, we solve single-objective and multi-objective relay selection problem. For the single-objective relay selection problem, in order to attain optimal system performance of cooperative relay network, a novel quantum differential evolutionary algorithm (QDEA) is proposed to resolve the optimization difficulty of optimal relay selection, and the proposed optimal relay selection scheme is called as optimal relay selection based on quantum differential evolutionary algorithm (QDEA). The proposed QDEA combines the advantages of quantum computing theory and differential evolutionary algorithm (DEA) to improve exploring and exploiting potency of DEA. So QDEA has the capability to find the optimal relay selection scheme in cooperative relay networks. For the multi-objective relay selection problem, we propose a novel non-dominated sorting quantum differential evolutionary algorithm (NSQDEA) to solve the relay selection problem which considers two objectives. Simulation results indicate that the proposed relay selection scheme based on QDEA is superior to other intelligent relay selection schemes based on differential evolutionary algorithm, artificial bee colony optimization and quantum bee colony optimization in terms of convergence speed and accuracy for the single-objective relay selection problem. Meanwhile, the simulation results also show that the proposed relay selection scheme based on NSQDEA has a good performance on multi-objective relay selection.

Distributed Relay Selection Algorithm for Cooperative Communication

  • Oo, Thant Zin;Hong, Choong-Seon
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2011.06d
    • /
    • pp.213-214
    • /
    • 2011
  • This paper presents a distributed relay selection algorithm for cooperative communication. The algorithm separates the decision making into two simple steps, decision making for employing cooperative communication and decision making for relay selection.

Swarm Intelligence-based Power Allocation and Relay Selection Algorithm for wireless cooperative network

  • Xing, Yaxin;Chen, Yueyun;Lv, Chen;Gong, Zheng;Xu, Ling
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.3
    • /
    • pp.1111-1130
    • /
    • 2016
  • Cooperative communications can significantly improve the wireless transmission performance with the help of relay nodes. In cooperative communication networks, relay selection and power allocation are two key issues. In this paper, we propose a relay selection and power allocation scheme RS-PA-PSACO (Relay Selection-Power Allocation-Particle Swarm Ant Colony Optimization) based on PSACO (Particle Swarm Ant Colony Optimization) algorithm. This scheme can effectively reduce the computational complexity and select the optimal relay nodes. As one of the swarm intelligence algorithms, PSACO which combined both PSO (Particle Swarm Optimization) and ACO (Ant Colony Optimization) algorithms is effective to solve non-linear optimization problems through a fast global search at a low cost. The proposed RS-PA-PSACO algorithm can simultaneously obtain the optimal solutions of relay selection and power allocation to minimize the SER (Symbol Error Rate) with a fixed total power constraint both in AF (Amplify and Forward) and DF (Decode and Forward) modes. Simulation results show that the proposed scheme improves the system performance significantly both in reliability and power efficiency at a low complexity.

Packet Scheduling for Cellular Relay Networks by Considering Relay Selection, Channel Quality, and Packet Utility

  • Zhou, Rui;Nguyen, Hoang Nam;Sasase, Iwao
    • Journal of Communications and Networks
    • /
    • v.11 no.5
    • /
    • pp.464-472
    • /
    • 2009
  • In this paper, we propose a packet scheduling algorithm for cellular relay networks by considering relay selection, variation of channel quality, and packet delay. In the networks, mobile users are equipped with not only cellular but also user relaying radio interfaces, where base station exploits adaptive high speed downlink channel. Our proposed algorithm selects a user with good cellular channel condition as a relay station for other users with bad cellular channel condition but can get access to relay link with good quality. This can achieve flexible packet scheduling by adjusting transmission rates of cellular link. Packets are scheduled for transmission depending on scheduling indexes which are calculated based on user's achieved transmission rate, packet utility, and proportional fairness of their throughput. The performance results obtained by using computer simulation show that the proposed scheduling algorithm is able to achieve high network capacity, low packet loss, and good fairness in terms of received throughput of mobile users.

Joint Relay Selection and Power Allocation for Two-way Relay Channels with Asymmetric Traffic Requirements

  • Lou, Sijia;Yang, Longxiang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.8
    • /
    • pp.1955-1971
    • /
    • 2013
  • This paper studies relay selection and power allocation for amplify-and-forward (AF) based two-way relay networks (TWRN) with asymmetric traffic requirements (ATR). A joint relay selection and power allocation algorithm is proposed to decrease the outage probability of TWRN with ATR. In this algorithm, two sources exchange information with the help of the relay during two time slots. We first calculate the optimal power allocation parameters based on instantaneous channel state information (CSI), and then derive a tight lower bound of outage probability. Furthermore, we propose a simplified relay selection criterion, which can be easily calculated as harmonic mean of instantaneous channel gains, according to the outage probability expressions. Simulation results verified the theoretical analyses we presented. It is shown that the outage probability of our algorithm improves 3-4dB comparing with that of other existing algorithms, and the lower bound is tight comparing with actual value for the entire signal-to-noise ratio (SNR) region.

Cooperative transmission protocol in the relay network (릴레이 네트워크에서의 협업전송 프로토콜)

  • Xiang, Gao;Park, Hyung-Kun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.10a
    • /
    • pp.1046-1048
    • /
    • 2009
  • Cooperative transmission is an effective technique to combat multi-path fading and reduce transmitted power. Relay selection and power allocation are important technical issues to determine the performance of cooperative transmission. In this paper, we proposed a new multi-relay selection and power allocation algorithm to increase network lifetime. The proposed relay selection scheme minimizes the transmitted power and increase the network lifetime by considering residual power as well as channel conditions. Simulation results show that proposed algorithm obtains much longer network lifetime than the conventional algorithm.

  • PDF

Farthest-k relay selection algorithm for efficient D2D message dissemination (효율적인 D2D 메시지 확산을 위한 최외곽 k개의 릴레이 선택 알고리즘)

  • Han, Seho;Lee, Howon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.3
    • /
    • pp.543-548
    • /
    • 2017
  • In the conventional algorithm, the D2D message dissemination algorithm based on the Epidemic routing protocol frequently causes a problem of duplication of the received messages due to the overlaps of D2D transmission coverages. It is because all D2D devices that receive the messages perform relaying the message replicas to other D2D devices within their transmission range. Therefore, we herein propose the farthest-k relay selection algorithm to mitigate this message duplication problem. In the farthest-k relay selection algorithm, less than k devices within the D2D transmission range perform message relay. Furthermore, we perform comparative performance analysis between the conventional D2D data dissemination algorithm and our farthest-k relay selection algorithm. By using intensive MATLAB simulations we prove the performance excellency of our farthest-k relay algorithm compared with the conventional algorithm with respect to coverage probability, the total number of initially and duplicately received messages, and transmission efficiency.

Node Selection Algorithm for Cooperative Transmission in the Wireless Sensor Networks (무선 센서네트워크에서 협업전송을 위한 노드선택 알고리즘)

  • Gao, Xiang;Park, Hyung-Kun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.6
    • /
    • pp.1238-1240
    • /
    • 2009
  • In the wireless sensor network, cooperative transmission is an effective technique to combat multi-path fading and reduce transmitted power. Relay selection and power allocation are important technical issues to determine the performance of cooperative transmission. In this paper, we proposed a new multi-relay selection and power allocation algorithm to increase network lifetime. The proposed relay selection scheme minimizes the transmitted power and increase the network lifetime by considering residual power as well as channel conditions. Simulation results show that proposed algorithm obtains much longer network lifetime than the conventional algorithm.

A distributed relay selection algorithm for two-hop wireless body area networks

  • Kim, Seung-Ku;Joo, Yang-Ick
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.41 no.2
    • /
    • pp.156-162
    • /
    • 2017
  • This paper investigates two-hop extension communication in wireless body area networks. Many previous studies have demonstrated that two-hop extended topology outperforms single-hop topology. Although many researchers have proposed using two-hop extension communication to improve link reliability, no one has considered using a relay selection algorithm or provided a suitable solution for wireless body area networks. The design goal of the proposed algorithm is selecting a proper relay node to retransmit failed packets distributively. The proposed algorithm configures the carrier sensing period to choose one relay node promptly without requiring additional interaction. We analyze the link conditions corresponding to various body postures and investigate which factors are proper to determine the carrier sensing period. The empirical results show that the proposed algorithm reduces the expected number of transmissions required to deliver a packet successfully.

Power-aware Relay Selection Algorithm for Cooperative Diversity in the Energy-constrained Wireless Sensor Networks (전력 제한된 무선 센서네트워크에서 협력 다이버시티를 위한 전력인지 릴레이 선택 알고리즘)

  • Xiang, Gao;Park, Hyung-Kun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.10A
    • /
    • pp.752-759
    • /
    • 2009
  • Cooperative diversity is an effective technique to combat multi-path fading. When this technique is applied to energy-constrained wireless sensor networks, it is a key issue to design appropriate relay selection and power allocation strategies. In this paper, we proposed a new multi-relay selection and power allocation algorithm to maximize network lifetime. The algorithm are composed of two relay selection stages, where the channel condition and residual power of each node were considered in multi-relay selection and the power is fairly allocated proportional to the residual power, satisfies the required SNR at destination and minimizes the total transmit power. In this paper, proposed algorithm is based on AF (amplify and forward) model. We evaluated the proposed algorithm by using extensive simulation and simulation results show that proposed algorithm obtains much longer network lifetime than the conventional algorithm.