• Title/Summary/Keyword: relay cooperative

Search Result 304, Processing Time 0.029 seconds

Power Allocation for OFDM-Based Cooperative Relay Systems

  • Wu, Victor K. Y.;Li, Ye (Geoffrey);Wylie-Green, Marilynn P.;Reid, Tony;Wang, Peter S. S.
    • Journal of Communications and Networks
    • /
    • v.10 no.2
    • /
    • pp.156-162
    • /
    • 2008
  • Cooperative relays can provide spatial diversity and improve performance of wireless communications. In this paper, we study subcarrier power allocation at the relays for orthogonal frequency division multiplexing (OFDM)-based wireless systems. For cooperative relay with amplify-and-forward (AF) and decode-and-forward (DF) algorithms, we investigate the impact of power allocation to the mutual information between the source and destination. From our simulation results on word~error-rate (WER) performance, we find that the DF algorithm with power allocation provides better performance than that of AF algorithm in a single path relay network because the former is able to eliminate channel noise at each relay. For the multiple path relay network, however, the network structure is already resistant to noise and channel distortion, and AF approach is a more attractive choice due to its lower complexity.

A Cooperative ARQ strategy in Ad hoc Cognitive Relays for Mobile Multimedia Communication (이동 멀티미디어 통신을 위한 Ad-hoc Cognitive Relay의 Cooperative ARQ 재전송 기법)

  • An, Mi-Eun;Kang, Hae-Lynn;Kim, Nak-Myeong
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.48 no.3
    • /
    • pp.28-35
    • /
    • 2011
  • Cooperative ARQ scheme is effective for better QoS guarantee for the next generation mobile communication systems where multimedia data transmission highly increases. In this paper, we propose a cooperative ARQ strategy in ad hoc cognitive relays for mobile multimedia communication for supporting instantaneous cooperation in MANET environment. In the proposed strategy, to support real time, delay-sensitive services, whenever a frame is transmitted from the source, each relay actively senses the SINR of the signal transmitted from the source, and determine whether to propose retransmission or not before the destination transmits feedback signal. To minimize the false retransmission decision or needless retransmission, we propose an adaptive sensing threshold optimization algorithm to maintain suboptimal sensing thresholds for each relay. By computer simulation, it is shown that the proposed cooperative ARQ retransmission scheme outperforms the conventional schemes with respect to frame transmission delay and frame loss probability in real time multimedia data transmission system.

Performance of Spectrum Sensing Using AF Cooperative Relay for Cognitive Radio System (인지 무선 통신에서 AF 협력 릴레이를 이용한 스펙트럼 센싱 성능)

  • Lee, Mi-Sun;Kim, Yoon-Hyun;Kim, Jin-Young
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.12 no.4
    • /
    • pp.31-36
    • /
    • 2012
  • In this paper, we proposed spectrum sensing using cooperative relay to solve problem of sensing performance degradation due to CPE (Customer-Premises equipments) which causes low SNR (signal-to-noise ratio) problem. In cooperative communication system, AF (amplify-and-forward) and DF (decoded-and-forward) is widely used for relay mechanism. Also, it is expected that cooperative relay scheme guarantees the high sensing performance by its diversity gain. Based on these backgrounds, in this paper, we apply to cooperative relay scheme to the CR (Cognitive Radio) system, and simulation results show comparison of the sensing performance.

Performance of Spectrum Sensing Using Cooperative Relay for Cognitive Radio System (인지 무선 통신을 위한 협력 릴레이 센싱 성능)

  • Lee, Mi-Sun;Kim, Yoon-Hyun;Kim, Jin-Young
    • Journal of Satellite, Information and Communications
    • /
    • v.7 no.1
    • /
    • pp.7-12
    • /
    • 2012
  • In this paper, we proposed spectrum sensing using cooperative relay to solve problem of sensing performance degradation due to CPE (Customer-Primise equipments) which causes low SNR (signal-to-noise ratio) problem. In cooperative communication system, AF (amplify-and-forward) and DF (decoded-and-forward) is widely used for relay mechanism. Also, it is expected that cooperative relay scheme guarantees the high sensing performance by its diversity gain. Based on these backgrounds, in this paper, we apply to cooperative relay scheme to the CR (cognitive radio) system, and simulation results show comparison of the sensing performance between AF and DF.

Optimal Power Allocation and Relay Selection for Cognitive Relay Networks using Non-orthogonal Cooperative Protocol

  • Lan, Peng;Chen, Lizhen;Zhang, Guowei;Sun, Fenggang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.5
    • /
    • pp.2047-2066
    • /
    • 2016
  • In this paper, we investigate joint power allocation and relay selection (PARS) schemes in non-orthogonal cooperative protocol (NOCP) based cognitive relay networks. Generally, NOCP outperforms the orthogonal cooperative protocol (OCP), since it can provide more transmit diversity. However, most existing PARS schemes in cognitive relay networks focus on OCP, which are not suitable for NOCP. In the context of NOCP, we first derive the joint constraints of transmit power limit for secondary user (SU) and interference constraint for primary user (PU). Then we formulate optimization problems under the aforementioned constraints to maximize the capacity of SU in amplify-and-forward (AF) and decode-and-forward (DF) modes, respectively. Correspondingly, we derive the closed form solutions with respect to different parameters. Numerical results are provided to verify the performance improvement of the proposed PARS schemes.

Optimized Relay Selection and Power Allocation by an Exclusive Method in Multi-Relay AF Cooperative Networks

  • Bao, Jianrong;Jiang, Bin;Liu, Chao;Jiang, Xianyang;Sun, Minhong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.7
    • /
    • pp.3524-3542
    • /
    • 2017
  • In a single-source and multi-relay amplify-forward (AF) cooperative network, the outage probability and the power allocation are two key factors to influence the performance of an entire system. In this paper, an optimized AF relay selection by an exclusive method and near optimal power allocation (NOPA) is proposed for both good outage probability and power efficiency. Given the same power at the source and the relay nodes, a threshold for selecting the relay nodes is deduced and employed to minimize the average outage probability. It mainly excludes the relay nodes with much higher thresholds over the aforementioned threshold and thus the remainders of the relay nodes participate in cooperative forwarding efficiently. So the proposed scheme can improve the utility of the resources in the cooperative multi-relay system, as well as reduce the computational complexity. In addition, based on the proposed scheme, a NOPA is also suggested to approach sub-optimal power efficiency with low complexity. Simulation results show that the proposed scheme obtains about 2.1dB and 5.8dB performance gain at outage probability of $10^{-4}$, when compared with the all-relay-forward (6 participated relays) and the single-relay-forward schemes. Furthermore, it obtains the minimum outage probability among all selective relay schemes with the same number of the relays. Meanwhile, it approaches closely to the optimal exhaustive scheme, thus reduce much complexity. Moreover, the proposed NOPA scheme achieves better outage probability than those of the equal power allocation schemes. Therefore, the proposed scheme can obtain good outage probability, low computational complexity and high power efficiency, which makes it pragmatic efficiently in the single-source and multi-relay AF based cooperative networks.

Relay-assisted Multiple Access Channel Protocol for Cooperative Diversity

  • Kim, Dong-Hyun;Kim, Gil;Lee, Kwang-Bok
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.1C
    • /
    • pp.1-8
    • /
    • 2009
  • Cooperative diversity is a novel technique to improve diversity gains, capacity gains, and energy saving. This technique involves multiple terminals sharing resources in order to build a virtual antenna array in a distributed fashion. In this paper, we propose a multi-user cooperative diversity protocol called Relay-assisted Multiple Access Channel(R-MAC) that allows multiple source terminals to transmit their signals simultaneously and the relay terminal forwards the aggregated signal received from the source terminals to the destination terminal. The proposed protocol converts the distributed antenna channels into an effective MIMO channel by exploiting a relay, increasing both diversity gain and system throughput. We investigate the performance of the proposed protocol in terms of outage probability and diversity-multiplexing tradeoff where we assume block fading channel environment. Our simulation results show that the proposed protocol outperforms direct transmission in the high spectral efficiency regime where the conventional cooperative diversity protocols cannot outperform direct transmission.

Improvement of Underlay Cooperative Cognitive Networks Bandwidth Efficiency under Interference and Power Constraints

  • Al-Mishmish, Hameed R.M.;Preveze, Barbaros;Alkhayyat, Ahmed
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.11
    • /
    • pp.5335-5353
    • /
    • 2019
  • The definition of the bandwidth efficiency (BE) of cognitive cooperative network (CCN) is the ratio between a number of the licensed slot(s) or sub-channel(s) used by the unlicensed users to transmit a single data packet from the unlicensed transmitter to unlicensed destination, and from unlicensed relay(s) to unlicensed destination. This paper analyzes and improves the BE in the underlay CCN with a new reactive relay selection under interference and power constraints. In other words, this paper studies how unlicensed cooperative users use the licensed network slot(s) or sub-channel(s) efficiently. To this end, a reactive relay selection method named as Relay Automatic Repeat Request (RARQ) is proposed and utilized with a CCN under interference and power constraints. It is shown that the BE of CCN is higher than that of cooperative transmission (CT) due to the interference and power constraint. Furthermore, the BE of CCN is affected by the distance of the interference links which are between the unlicensed transmitter to the licensed destination and unlicensed relay to the licensed destination. In addition, the BE for multiple relays selection over a CCN under interference and power constraints is also analyzed and studied, and it is shown that the BE of CCN decreases as the number of relays increases.

Relay-Based WUSB/DRD/WLP Cooperative Protocol Design in Ship Area (선박 내 Relay-based WUSB/DRD/WLP 연동 프로토콜 설계)

  • Lee, Seung Beom;Jeong, Min-A;Kwon, Jang-Woo;Lee, Seong Ro
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39C no.9
    • /
    • pp.789-800
    • /
    • 2014
  • In this paper, we propose a cooperative protocol of relay-based WUSB/DRD and WLP device in WSS of ship area WiMedia environment. For this purpose, we investigate a RNT table configuration and algorithm of RNS relay node used in relay-based cooperative communication. Then, we describe a device that makes up WLP network and propose a cooperative protocol for WUSB/DRD/WLP device communication. The proposed cooperative protocol can communicate with WUSB/DRD/WLP devices by using standard DRP reservation and WUSB DRP reservation.

Relay Selection Scheme Based on Quantum Differential Evolution Algorithm in Relay Networks

  • Gao, Hongyuan;Zhang, Shibo;Du, Yanan;Wang, Yu;Diao, Ming
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.7
    • /
    • pp.3501-3523
    • /
    • 2017
  • It is a classical integer optimization difficulty to design an optimal selection scheme in cooperative relay networks considering co-channel interference (CCI). In this paper, we solve single-objective and multi-objective relay selection problem. For the single-objective relay selection problem, in order to attain optimal system performance of cooperative relay network, a novel quantum differential evolutionary algorithm (QDEA) is proposed to resolve the optimization difficulty of optimal relay selection, and the proposed optimal relay selection scheme is called as optimal relay selection based on quantum differential evolutionary algorithm (QDEA). The proposed QDEA combines the advantages of quantum computing theory and differential evolutionary algorithm (DEA) to improve exploring and exploiting potency of DEA. So QDEA has the capability to find the optimal relay selection scheme in cooperative relay networks. For the multi-objective relay selection problem, we propose a novel non-dominated sorting quantum differential evolutionary algorithm (NSQDEA) to solve the relay selection problem which considers two objectives. Simulation results indicate that the proposed relay selection scheme based on QDEA is superior to other intelligent relay selection schemes based on differential evolutionary algorithm, artificial bee colony optimization and quantum bee colony optimization in terms of convergence speed and accuracy for the single-objective relay selection problem. Meanwhile, the simulation results also show that the proposed relay selection scheme based on NSQDEA has a good performance on multi-objective relay selection.