• Title/Summary/Keyword: relaxed ($\gamma$,r)-cocoercive mappings

Search Result 3, Processing Time 0.016 seconds

GENERALIZED SYSTEMS OF RELAXED $g-{\gamma}-r-COCOERCIVE$ NONLINEAR VARIATIONAL INEQUALITIES AND PROJECTION METHODS

  • Verma, Ram U.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.7 no.2
    • /
    • pp.83-94
    • /
    • 2003
  • Let K be a nonempty closed convex subset of a real Hilbert space H. Approximation solvability of a system of nonlinear variational inequality (SNVI) problems, based on the convergence of projection methods, is given as follows: find elements $x^*,\;y^*{\in}H$ such that $g(x^*),\;g(y^*){\in}K$ and $$<\;{\rho}T(y^*)+g(x^*)-g(y^*),\;g(x)-g(x^*)\;{\geq}\;0\;{\forall}\;g(x){\in}K\;and\;for\;{\rho}>0$$ $$<\;{\eta}T(x^*)+g(y^*)-g(x^*),\;g(x)-g(y^*)\;{\geq}\;0\;{\forall}g(x){\in}K\;and\;for\;{\eta}>0,$$ where T: $H\;{\rightarrow}\;H$ is a relaxed $g-{\gamma}-r-cocoercive$ and $g-{\mu}-Lipschitz$ continuous nonlinear mapping on H and g: $H{\rightarrow}\;H$ is any mapping on H. In recent years general variational inequalities and their algorithmic have assumed a central role in the theory of variational methods. This two-step system for nonlinear variational inequalities offers a great promise and more new challenges to the existing theory of general variational inequalities in terms of applications to problems arising from other closely related fields, such as complementarity problems, control and optimizations, and mathematical programming.

  • PDF

PROJECTION METHODS FOR RELAXED COCOERCIVE VARIATION INEQUALITIES IN HILBERT SPACES

  • Su, Yongfu;Zhang, Hong
    • Journal of applied mathematics & informatics
    • /
    • v.27 no.1_2
    • /
    • pp.431-440
    • /
    • 2009
  • In this paper, we introduce and consider a new system of relaxed cocoercive variational inequalities involving three different operators and the concept of projective nonexpansive mapping. Base on the projection technique, we suggest two kinds of new iterative methods for the approximate solvability of this system. The results presented in this paper extend and improve the main results of [S.S. Chang, H.W.J. Lee, C.K. Chan, Generalized system for relaxed co coercive variational inequalities in Hilbert spaces, Appl. Math. Lett. 20 (2007) 329-334] and [Z. Huang, M. Aslam Noor, An explicit projection method for a system of nonlinear variational inequalities with different ($\gamma,r$)-cocoercive mappings, Appl. Math. Comput. (2007), doi:10.1016/j.amc.2007.01.032].

  • PDF

THREE-STEP MEAN VALUE ITERATIVE SCHEME FOR VARIATIONAL INCLUSIONS AND NONEXPANSIVE MAPPINGS

  • Zhang, Fang;Su, Yongfu
    • Journal of applied mathematics & informatics
    • /
    • v.27 no.3_4
    • /
    • pp.557-566
    • /
    • 2009
  • In this paper, we present the three-step mean value iterative scheme and prove that the iteration sequence converge strongly to a common element of the set of fixed points of a nonexpansive mappings and the set of the solutions of the variational inclusions under some mild conditions. The results presented in this paper extend, generalize and improve the results of Noor and Huang and some others.

  • PDF