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PROJECTION METHODS FOR RELAXED COCOERCIVE
VARIATION INEQUALITIES IN HILBERT SPACES

YONGFU SU* AND HONG ZHANG

ABSTRACT. In this paper, we introduce and consider a new system of re-
laxed cocoercive variational inequalities involving three different operators
and the concept of projective nonexpansive mapping. Base on the pro-
jection technique, we suggest two kinds of new iterative methods for the
approximate solvability of this system. The results presented in this pa-
per extend and improve the main results of [S.S. Chang, HW.J. Lee, C.K.
Chan, Generalized system for relaxed cocoercive variational inequalities in
Hilbert spaces, Appl. Math. Lett. 20 (2007) 328-334] and [Z. Huang, M.
Aslam Noor, An explicit projection method for a system of nonlinear vari-
ational inequalities with different (v, r)-cocoercive mappings, Appl. Math.
Comput. (2007), doi:10.1016/j.ame.2007.01.032].
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1. Introduction

Variational inequality theory, which was introduced by Stampacchia [1] in
1964, has a wide range of applications in the fields of industry, finance, economics,
social, ecology, regional, pure and applied sciences. The ideas and techniques of
the variational inequalities are being proved to be productive and innovative. It
has been shown that this theory provides a simple, natural and unified framework
for a general treatment of unrelated problems. Projection method and its variant
forms, the origin of which can be traced back to Lions and Stampacchia {2],
represents an important tool for finding the approximate solutions of variational
inequalities. The main and basic idea of this tool is to establish the equivalence
between the variational inequalities and the fixed point problems.
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In 1983, Gabay [3] has shown that the convergence of a projection method can
be proved for cocoercive operators. In recent years, the researches which based
on the convergence of projection methods, on the approximate solvability of a
system for relaxed cocoercive nonlinear variational inequality in Hilbert spaces
have been studied by many authors (see [4-9]).

Inspired and motivated by research going in this area, we introduce and con-
sider a new system of variational inequalities involving three different nonlinear
operators and the concept of projective nonexpansive mapping. This class of
system includes the system of variational inequalities which involving one oper-
ator and the classical variational inequalities. Using the projection technique,
we suggest and analyze two kinds of three-step iterative algorithms for solving
this system. We also prove the convergence of the proposed iterative methods
under mild conditions. Our results represent in this paper extend and improve
the recent results announced by Chang et al [8], Huang and Noor et al [9] and
others.

In this paper, we present firstly the concept of projective mappings.

Definition 1.1. Let K be a nonempty closed convex subset of a Hilbert space
H. A mapping Sk : H — H is said to be projection nonezpansive if

| PSkz — PeSkyl < |lz —yll, Vz,y€H.
Where Pk is the projection of H onto K.

This class of projection nonexpansive mappings is more general than the class
of nonexpansive mappings. Px Sy is a nonexpansive mapping, so that Sk is a
projection nonexpansive mapping which may be not nonexpansive mapping.

Example. Let Z be the complex plane and let K = {z € Z, ||2|| < 1} be the
unit bull. Let S: Z — Z be a mapping which defined by

; 2re if r>1 ;
(7 ’ 4
S(re®’) = {rew if r<l. Vre? € Z

It is easy to see that, S is a expansive mapping(no nonexpansive mapping). In
addition, Px S is a nonexpansive mapping, so that S is a projection nonexpansive
mapping which is not nonexpansive mapping.

Let H be a real Hilbert space whose inner product and norm are denoted
by {-,-) and || - ||, respectively. Let K be a closed and convex set in H. Let
T, T5,T5: K x K x K —+ H be three nonlinear different operators and Sk is a
projection nonexpansive mapping.

We consider the problem of finding z*,y*, 2* € K such that

(z* - Sx(y" —pTh (y*, 2%, 2%), 2 —2*) 20, VzeK, Vp>0, (1.1)
(" — Sk (2" = nTz(", 2", y")),z—y*) 20, VzekK, V>0, (1.2)
(2" = Sk(z* — MTs(z*,y*, 2"),z - 2*) >0, VzeK,VA>0, (1.3)
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which is system of nonlinear variational inequalities involving three different
nonlinear operators.

Next, we consider some special cases of the problem (1.1), (1.2) and (1.3) as
follows:

(1) If Sk = I, T; : K x K — H is a bivariate mapping (i=1,2,3) and A =
0, then the problem (1.1), (1.2) and (1.3) reduces to the following nonlinear
variational inequality problem: to find x*,y* € K such that

(pTi(y*,z*) +2* —y*,z—2") 20, Y€K, Vp>0, (1.4)
(a(z*,y*") +y" —2*,z—y*) >0, VzeK, Vn>0 (1.5)
which is studied by Z. Huang and M. Noor in [9].

(IDIf Sx =1, Ty =T> =T : K x K — H is a bivariate mapping and A = 0,
then the problem (1.4) and (1.5) reduces to the following nonlinear variational
inequality problem: to find z*, y* € K such that

(fT(y*,z")+z* —y*,x—2*) >0, VezeK, Vp>0, (1.6)

Ty )+y —2*,2—y*") >0, VzecK, Vn>0 (1.7)
which is studied by S. S. Chang, H. W. Joseph and C. K. Chan in [8].
Definition 1.2. A mapping T : K — H is called r-strongly monotonic if for all
z,y € K, there exists a constant r > 0, such that

(Tz - Ty,z —y) 27z —y|*.
Definition 1.3. A mapping T : K — H is called y-cocoercive if for all z,y € K,
there exists a constant v > 0, such that
(Tz — Ty, z —y) > —|Tz — Tyl*.
Definition 1.4. A mapping T : K — H is called relazed (v, r)-cocoercive if for
all z,y € K, there exists constants v > 0, r > 0 such that
(Tz — Ty, —y) = =y Te — Tyl|* + rllz —y|*.

For v = 0, T is r-strongly monotone. This class of mappings is more general
than the class of strongly monotone mappings. It is easy to see that we have
the following implication:

r -strongly monotonicity = relaxed (v, r)-cocoercivity.

Definition 1.5. A mapping T : K — H is called p-Lipschitzian if for all
z,y € K, there exists a constant y > 0, such that

1Tz — Ty|| < pllz -yl
In order to prove our results we need the following lemmas:

Lemma 1.1[9]. For a given element z € H, u € K satisfies the inequality
(u—z,v—u) >0 for all ve K,
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if and only if u € K satisfies the relation
u = Pgz,
where Pk is a projection from K to H.

Using Lemma 1.1, we can easily show that finding the solution of (1.1), (1.2)
‘and (1.3) is equivalent to finding z*,y*, 2* € K such that

z* = PxSkly* — pT1(y*, 2%, ")), (1.8)
* = PgSk[z* — nTa (2", =", y")], (1.9)
2* = PxSklz* — MT3(z*, y*, 2*)]. (1.10)

Lemma 1.2[8]. Let {an}, {bn} and {cn} be three nonnegative real sequences
satisfying the following conditions:
ant1 < (1= An)an +bn +cn, VR 2 no

where ng is some nonnegative integer, A, € (0,1) with Y oo oAy = 00, by =
0(An) and Y > o cn < 00, then ap, — 0 (asn — 00).

2. Projection algorithms

In this section, we suggest two kinds of projection algorithms for solving the
system of variational inequalities (1.1), (1.2) and (1.3). One is explicit iterative
scheme and the other is not explicit iterative scheme. By the explicit projection
algorithm, our result will extend the main results of Huang and Noor et al[9].
Using the other algorithm, we improve the results of Chang et al [8].

Algorithm 2.1. For arbitrarily chosen initial points g, ¥o, 20 € K compute the
sequence {Tn}, {yn} and {z,} such that
Tp4l = (1 - an)xn + anPKSK[yn - PTl(yn7 Zn;y xn)}
Yn = (1 - ﬁn)xn + OnPxSk [Zn - WTZ(Zm Ty yn)] (2'1)
Zp = (1 - Tn)xn + TnPKSK{xn - /\TS(mns Yn, zn)]
where Py is the projection of H onto K, p,n, A > 0 are constants and {oy, }, {6n},
{mn} are sequences in [0,1].
Algorithm 2.2. For arbitrarily chosen initial points zg, 3o, 20 € K compute the
sequence {z,}, {yn} and {z,} such that
Inil = (1 - an)zn + anPKSK[yn ~ Ty (yn’ Zn;, :E‘n)}
Yn+1 = (1 - Bn)mn + ,BnPKSKIZn - "7T2(zn, In, yn)} (2'2)
Zn+1 = PrSk[tni1 — XI3(Tnt1, Yn, 2n)]
where P is the projection of H onto K, p,n, A > 0 are constants and {on}, {Gn}
are sequences in [0, 1].

USk =1, Ty =T =T =T : K x K - H is a bivariate mapping, A =0
and 7, = 1, then the Algorithm 2.1 can be reduced to the following.
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Algorithm 2.3. For arbitrarily chosen initial points xo,yo € K compute the
sequence {z,} and {y,} such that

{mn—i—l = (1 - an)xn + anPK[yn - pT(yn, "Bn)] (23)

Yn = (1 - ﬂn)xn + ﬂnPK[mn - nT(xm yn)]

IfSx =1, Ti: Kx K — H (i=1,2,3) is a bivariate mapping, A = 0 and
Br = 1, then the Algorithm 2.2 can be reduced to the following.

Algorithm 2.4. For arbitrarily chosen initial points zo,y0 € K compute the
sequence {z,} and {yn} such that

(2.3)

Tpt1 = (1 — an)Zn + anPx[yn — pT1 (Un, Tn)]
Ynt1 = Pr[Tn — 1T2(Zn, Yn))

3. Main results

Based on Algorithms 2.1 and 2.2, we present the approximation solvability
of the problem (1.1),(1.2) and (1.3) involving the mappings T; : K x K X K —
H which is relaxed (v;,;) cocoercive and p;-Lipschitz continuous in the first
variable(i=1,2,3). For the purpose we first give the following definitions:

Definition 3.1. A three-variable mapping 7 : K x K x K — H is called relazed
(v, 7)-cocoercive if for all x,y € K, there exists constants vy > 0, r > 0 such that

(T(z,u,p) — T(y,v,q),x — ) > | T(z,u,p) — T(y,v,0)|* + rllz — y?,
Yu,v,p,q € K.

Definition 3.2. A mapping T : K x K x K — H is called p-Lipschitzian if for
all z,y € K, there exists a constant g > 0, such that

\T(z,u,p) — T(y,v,9)| < pllz—yl,Vu,v,p,q € K.

Theorem 3.1. Let K be a nonempty closed convex subset of a real Hilbert
space Hand Ty : K x K x K — H be three-varible relazed (7, 7;)-cocoercive
and p;-Lipschitzian in the first variable, respectively(i=1,2,3). Suppose that
z*,y*, 2* € KxKxK is a solution to the problem (1.1), (1.2) and (1.3) and that
{Zn}, {Un}, {za} are the sequences generated by Algorithm 2.1. If {an}, {Ba} and
{Tn} are three sequences in [0, 1] satisfying the following conditions:

() T gan = oo

(1) Yo o1 — ) < 00, Y5 g(1 — ) < 00

(i43) 0 < p,n, A < min{2(r1 — npd) /3, 2(r2 — v2u3)/u3, 2(rs —y313)/3};

(iv) 11 > mpd, 2> Y2p3, T3> Y343,
then the sequences {Ty}, {yn}, {2n} converge strongly to x*,y*,2* respectively.
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Proof. To get the result, we need first calculate ||zp41 —z*| for all n > 0.. From
(2.1), (1.8) and the nonexpansive property of Px Sk, we have
[Zn+1 — 2™ =1 — @n)@n + onPrSk[yn — pT1(Yn, 2, Tn)]
— (1 —an)z” — enPxSkly” — pT1(y", 2%, 27)]|
(1 — an)llen — 7|
+ anllyn —y* = pIT1(Yn, 20, 2n) — Ta(y", 2%, )]l

3.1)

Using the relaxed (1, r1)-cocoercive and py-Lipschitzian definition in the first
variable on T}, we obtain

lyn — ¥ = PITL(Yn» 20, Tn) — TL(y*, 2%, 2%)] 12
= lyn — 4" 11% — 20(T1(yn, 2n, Tn) — T2(y*, 2%, %), Yn — ¥*)
+I92“T1(yna Zny m’n) -1 (?/*1 Z, fv*)llz (3 2)
< lyn = 9* 1% + 20 1 T2 (U, 20, 2a) — Ta(y*, 2%, 2%)|12 '
=201 [y — v* 12 + 223 lym — v 12
= (1+20mud - 2or1 + P2ud)llym — v [1%

Set 91 = [1 + 2py1p? — 201 + p?u3)/2. It is clear from condition (iii) that
0 < 8; < 1. Hence from (3.2), it follows that

nyn -y - p[Tl(yna zmxn) - Tl(y*a z*,x*)]” <6 ”yn -y H (33)

Similarly, from the relaxed {72, ro)-cocoercive and po-Lipschitzian definition in
the first variable on T3, we have
”zn -2 = n[T2(Zn> wn,y‘n} - T2(Z*a37*7y*)m2
= "Zn - Z*”2 - 27}’(T2(Zn,$n, yn) - T2(Z*7m*ay*)? Zp — Z*>
+772||T2(3m$myn) - Ta(z*, z%, ?/*)”2 (3.4)
< = Z*Hz + 2m72 (T2 (20, Tn, yn) — T2(2*, 2%, yI)I? )
=21ral|zn — 2|2 + 1?2 — 2* |12
= (1+ 20723 — 2r2 + 17 p3) 20 — 2*|1%.
Set 6y = [1+ 2nyop? — 2nry + nPpd]V/2. Tt is clear from condition (iii) that
0 < 6, < 1. Hence from {3.4), it follows that

lzn = 2* = n[Ta(zn, Tn, ya) — Ta(2", 2%, 7]l < O2ll2n — 27|l (3.5)

From relaxed (-3, r3)-cocoercive and pg-Lipschitzian definition in the first vari-
able on T3, we get

lZn — 2* — A[T5(Zn, Yns 2n) — Tz, y*, 2%)}||?

= |lzn — 2*)|% = 2MT5(Zn, Yn, 20) — T3(z*, 4", 2*), &n — T*)
+A2 IlTS(xm Yn» Z’n) - T3($*, y*a Z*)“2

< len — 2* + 2X93]| T3 (20, Yn, 20) — Ta(2*, 9%, 2°) I
~2Xr3ffen — 2|2 + N2 pd||z, — o

= (1+2Xypf — 223 + N pd)||zn — z*)2.

(3.6)
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Set 03 = [1 4+ 2Xy3p3 — 2Xxr3 + X2p3]'/2. Tt is clear from condition (iii) that
0 < 63 < 1. Hence from (3.6), it follows that

|20 —2* = A[T3(2n, Y, 20) = Ta(a™, 5", 2]} < Osllen — 2. (3.7)
Hence from (3), (2.1) and (3.7),we can make an estimate for ||z, — 2*|.

[[2n — 2"

”(1 - Tn)mn + TnPKSK[xn - ATS(Im Yn, zn)]

_(1 - Tn)z* - TnPKSK[m* - )‘T3(x*7y*’ Z*)]H

< (=120 — 2| + TallTn — 2% — AN[T3(Tn, Yns 20) — Ta(@*, y*, 2]l
< A =m)|zn — 2+ (1 = m)|z* — 2| + Tabsllen — 27|

< e — o[+ (1= m)llz™ — 27|,

il

(3.8)
Hence from (2), (2.1), (3.5) and (3.8),we can make an estimate for |jyn, —y*||.

lyn — v~ |l

“(1 - ﬂn)xn + BnPr Sk [Zn - "7T2(Zm A yn)]
—(1 = Bn)y* — BnPx Sk [z* — nTa(z*, z*,y")l||

Il

< (A =Ballzn ~y* |l + Bullzn — 2% — MT2(2ns T, Yn) — To(z*, z*, y)]|
< (1= Ba)llen —a*|| + (1= Ba)|lz* — y*Il + Bnbalzn — 2”|
< (L= Ba)llwn =¥ + (1 = Bo)lle* — y*[| + Bab2[llon — 2*||
+(1 =)z = 2*|]
< llen =2+ 1= Ba)lle” — y* ]| + 02(1 = mn)l[2" — 27
(3.9)
Besides, combining (3.1), (3.2), (3.3) with (3.9), we have
[Znt1 — "]
< (- an)llzn — 2| + anbi|lyn — v ||
< (- an)llen — 2*| + anbufllen — 2%l + (1 = Bo)ll2” —y"|
+02(1 — )2 — 2]
< (1= an(l = 60) 20 — 27|+ 811 - Bn)lla™ =yl + O10a(L — 7 2" — 2.

(3.10)
Taking an = ||zn — 2* ||, An = an(1—01), by = 0 and ¢, = 01(1 = Gu)|lz* —y*|| +
6105(1 — 7»)llz* — 2*|| in Lemma 1.2, we know that all conditions in Lemma 2.2
are satisfied, so ||z, — 2*|| — 0 as (n — 00). Apply the Lemma 1.2 to (3.9) and
(3.8), we can get ||y, —y*| — 0 and |z, — 2 % || — 0 as well as ||z, —z*|| — O(as
n — oo). This completes the proof.

Remark 3.1. Theorem 3.1 extends and improves the results of Theorem 3.1 in
S.5.Chang[8] and others.

The following Corollary can be obtained from Theorem 3.1 immediately.

Corollary 3.1. Let K be a nonempty closed convezr subset of a real Hilbert
space H and T : K x K — H be two-varible relazed (v, r)-cocoercive and -
Lipschitzian in the first variable. Suppose that z*,y* € K x K is a solution to
the SNVI problem (1.6), (1.7) and that {z,}, {yn} are the sequences generated by
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Algorithm 2.8. If {an},{Bn} are two sequences in [0, 1] satisfying the following
conditions:

(1) 3o On = 00;

(1) 3 oprg(1 = Bn) < 00;

(iit) 0 < p,n < 2(r — yu?)/u%;

(iv) v > yp?,
then the sequences {xn}, {yn} converge strongly to z*,y* respectively.
Theorem 3.2 Let K be a nonempty closed convex subset of a real Hilbert space
Hand T, : K x K x K — H be three-varible relaxed (v;, r;)-cocoercive and ;-
Lipschitzian in the first variable, respectively(i=1,2,3). Suppose that z*,y*,2* €
K x K x K is a solution to the SNVIDI problem (1.1), (1.2) and (1.3) and that
{zn}, {Un}, {2} are the sequences generated by Algorithm 2.2. If {om}, {Bn} are
two sequences in [0, 1] satisfying the following conditions:

(1) oo @n = 00

(i) Lopo(l = Bn) < 003

(iti) 0 < p,m, A < min{2(rL — mpd)/pd, 2r2 —v2p3)/p3, 2(rs — vsp3)/13};

(i) 11 > mpf, 2 > V3, T3> 1343,
then the sequences {Zn}, {yn}; {2n} converge strongly to =*,y*, z* respectively.
Proof. The beginning several steps of the proof process in this Theorem is similar
with the proof of Theorem 3.1. Hence the process will refine for these steps.

To get the result, we need first calculate ||zp41 — z*|| for all n > 0. From
(2.2},(1) and the nonexpansive property of Px Sk, we have

fzns1 —2*|)
=H(1 - aﬂ)xn + anPKSK{yn - oI (ym Zny xn)}
~ (1 —an)z* — anPxSkly* — pTa(y*, 2%, 2%)]|
S(l - an)llxn - .’L'*” + anfiyn - y* - p[Tl (yna Zn, xn) - Tl(y*a Z*v J)*)”'
Set 61 = [1+ 20mpf — 2pr1 + p?u]M2, 62 = [1+ 20724 — 2072 + P 03],
63 = [L+2Xy3pd — 2Xrs +A2u3]'/2, it is clear from condition (iii) that 0 < 6; < 1
(i=1,2,3).
Using the relaxed (vy;, 7;)-cocoercive and p;-Lipschitzian definition in the first
variable on T}, we obtain

;Iyn ~y* - p[Tl('yna men) - T (9*7 Z*,CC*)]“ < 91llyn - y*” (3'12)
lzn — 2" — 0[T2(2n, T, Yn) — Ta(z", 2", y")]|| < G220 — 2*|. (3.13)

IZns1 — 2" = AlTs(Zn41, Yn, 2n) — T3(2™, 47, 2] < Oaflznis — 27| (3.14)
Hence from (3), (2.2) and (3.14), we can make an estimate for ||zp41 — 2*||.

(3.11)

llza+1 — 2*| '

“PKSK{CUn+1 - >\T3(37n+17 Yn, Zn)] - PKSK[x* - )‘T?’(x*a ¥, Z*)]” (3 15)
lentr — 2* — MNT3(Tns1, Y, 2n) — Ta(z*, y*, 29| .
b3)|znt1 — ),

ININ T
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which implies that for all n > 1,
lzn — 2% < O3||zn — 2| (3.16)
From (2), (2.2), (3.13) and (3.16),we can make an estimate for |[yn+1 — y*|-

Nyn+1 — 7|l
H(l - ﬂn)xn + BnPx Sk [Zn - 77T2(Zna Tn, yn)]
—(1 = Br)y* — BnPrSk([z* — nTa(2*, z*, y*)]|l

< (A =Ba)llzn — v || + Bullzn — 2* — n[T2(2n, T, Yn) — To(z*, 2%, y)]|
< (L= Bo)l|lzn — || + (1 = Bn)llz* — y*|| + Bnbl|zn — 27|
< (= Ba)llen — 2| + (1= Ba)llz* = y*|| + Bubabs|en — =¥
< lzn =27+ (1 = Bo)llz” — y7|l-
(3.17)
Besides, combining (3.11), (3.12) with (3.17), we have
|Zn+1 — =]
(1 — an)llzn — z*|| + anb ||yn — vl (3.18)

(1 = an)lzn — z*{ + anbi [|zn — 2| + (1 = Ba)ll2" — 7]
(1= an(l = 01))lzn — 2*|| + 61(1 = Bo)llz” — v

Taking an = ||Zn — 2*||, An = an(1 — 61), by = 0 and ¢, = 61(1 — Bn)llz* — v*||
in Lemma 1.2, we know that all conditions in Lemma 2.2 are satisfied, so ||z, —
z*|| = 0 as (n — o). Apply the Lemma 1.2 to (3.17) and (3.16), we can get

lyn —y* || — 0 and ||z, — 2% || — O as well as ||z, — z*|| — O(as n — co0). This
completes the proof.

ININIA

Remark 3.2. Theorem 3.2 extends the solvability of (1.4) and (1.5) to the
more general form. Besides, Theorem 3.2 improves the results of Theorem 3.1
in Huang and Noor et. al[9].

The following Corollary can be obtained from Theorem 3.2 immediately.

Corollary 3.2. Let K be a nonempty closed convez subset of a real Hilbert
space H and T; : K x K — H be two-varible relazed (7;,r;)-cocoercive and
pi-Lipschitzian in the first variable, respectively(i=1,2). Suppose that x*,y* €
K x K is a solution to the SNVID2 problem (1.4), (1.5) and that {z,}, {yn}
are the sequences generated by Algorithm 2.4. If {an} are two sequences in [0, 1]
satisfying the following conditions:

(1) 2ooro@n = 00;

(i6) 0 < p, < min{2(r1 —mpd)/ 13, 2(r2 — v203)/13};

(iid) r1 > mpd, 12> 1243,
then the sequences {x,}, {yn} converge strongly to =*,y* respectively.
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