• Title/Summary/Keyword: relatively

Search Result 32,171, Processing Time 0.071 seconds

Efficient Deep Learning Approaches for Active Fire Detection Using Himawari-8 Geostationary Satellite Images (Himawari-8 정지궤도 위성 영상을 활용한 딥러닝 기반 산불 탐지의 효율적 방안 제시)

  • Sihyun Lee;Yoojin Kang;Taejun Sung;Jungho Im
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.5_3
    • /
    • pp.979-995
    • /
    • 2023
  • As wildfires are difficult to predict, real-time monitoring is crucial for a timely response. Geostationary satellite images are very useful for active fire detection because they can monitor a vast area with high temporal resolution (e.g., 2 min). Existing satellite-based active fire detection algorithms detect thermal outliers using threshold values based on the statistical analysis of brightness temperature. However, the difficulty in establishing suitable thresholds for such threshold-based methods hinders their ability to detect fires with low intensity and achieve generalized performance. In light of these challenges, machine learning has emerged as a potential-solution. Until now, relatively simple techniques such as random forest, Vanilla convolutional neural network (CNN), and U-net have been applied for active fire detection. Therefore, this study proposed an active fire detection algorithm using state-of-the-art (SOTA) deep learning techniques using data from the Advanced Himawari Imager and evaluated it over East Asia and Australia. The SOTA model was developed by applying EfficientNet and lion optimizer, and the results were compared with the model using the Vanilla CNN structure. EfficientNet outperformed CNN with F1-scores of 0.88 and 0.83 in East Asia and Australia, respectively. The performance was better after using weighted loss, equal sampling, and image augmentation techniques to fix data imbalance issues compared to before the techniques were used, resulting in F1-scores of 0.92 in East Asia and 0.84 in Australia. It is anticipated that timely responses facilitated by the SOTA deep learning-based approach for active fire detection will effectively mitigate the damage caused by wildfires.

Effects of Increasing Air Temperatures and CO2 Concentrations on Herbicide Efficacy of Acalypha australis and Phytotoxicity of Soybean Crops (대기온도와 CO2 농도 증가에 따른 우점잡초 깨풀의 제초제 약효 및 콩 약해 변화)

  • Hyo-Jin Lee;Hyun-Hwa Park;Ye-Geon Kim;Do-Jin Lee;Yong-In Kuk
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.68 no.3
    • /
    • pp.121-133
    • /
    • 2023
  • The purpose of this study was to improve weed management systems under varying carbon dioxide concentrations and temperatures by evaluating the growth of Acalypha australis and observing the efficacy of four foliar and four soil herbicides, as well as measuring phytotoxicity in soybean crops treated with these herbicides. In both growth chamber and greenhouse conditions, plant height and shoot fresh weight of Acalypha australis increased as temperature increased. The variable to maximum fluorescence ratio (Fv/Fm), relative electron transport rate (ETR), plant height, leaf area, and shoot fresh weight of Acalypha australis were higher at carbon dioxide concentrations of 800 ppm than at 400 ppm. The efficacy of a foliar herbicide, glufosinate, on Acalypha australis was lower at 30℃ than at 20℃ and 25℃ in the growth chamber condition and was also lower at 29℃ than at 21℃ and 25℃ in greenhouse conditions. In contrast, mecoprop efficacy on Acalypha australis was lower at 20℃ and 25℃ than at 30℃ in growth chamber conditions and lower at 21℃ and 25℃ than at 29℃ in greenhouse conditions. Glyphosate efficacy was lower at 21℃ than at 25℃ and 29℃ under greenhouse conditions. With soil herbicides, metolachlor and ethalfluraline, efficacies were higher at relatively high temperatures under both growth chamber and greenhouse conditions. However, in the case of linuron, the difference in efficacy was not observed under varying temperatures in both growth chamber and greenhouse conditions. When ¼ of the recommended glyphosate rates were applied to Acalypha australis, efficacy was lower under 800 ppm carbon dioxide concentrations than under 400 ppm. In contrast, when ¼ of the recommended rate of bentazone was applied to Acalypha australis, efficacy was higher under 800 ppm carbon dioxide concentrations than under 400 ppm. Despite application rates, glufosinate efficacy differed insignificantly under different carbon dioxide concentrations. When applied at ¼ of the recommended rate, the efficacy of ethalfuralin was higher under 800 ppm carbon dioxide concentrations than under 400 ppm. However, efficacies of other herbicides were not different despite varying carbon dioxide concentrations. Soybean phytotoxicity in crops treated with the recommended rate and twice the recommended rate of soil herbicides was not significantly different regardless of temperature and carbon dioxide concentrations. Overall, weed efficacy of some herbicides decreased in response to different temperatures and carbon dioxide concentrations. Therefore, new weed management methods are required to ensure high rates of weed control in conditions affected by climate change.

Investigation of Growth and Egg Production Performance of 6 Indigenous Korean Chicken Breeds Enrolled in DAD-IS (DAD-IS에 등재된 한국 토종닭 6품종의 성장 및 산란 능력 조사)

  • Huimang Song;Seungchang Kim;Sang-Rae Cho;Dae-Hyeok Jin
    • Korean Journal of Poultry Science
    • /
    • v.50 no.4
    • /
    • pp.241-249
    • /
    • 2023
  • Following the Animal genetic resource for food and agriculture (AnGR) is considered as an independent resource for the possessing country, ensuring the sovereignty of AnGR is important. The present study investigated the growth and egg production performance of six breed enrolled in DAD-IS for the purpose of securing scientific data on AnGR in Korea. A total of 323 chickens (female 181, male 142) were used in this study, with the following six breeds: Korean Leghorn (LEG), Gyeongbuk Araucana (ARA), Korean native chicken (KNC), Korean Ogye (Ogye), Hyunindak (HIL), Heongseongyakdak (HYD). The body weight of male ARA from hatching to 32 weeks of age was the highest among the breeds, and LEG and Ogye were relatively lower (P<0.0001, excluded body weight data of HYD). The body weight of female ARA was the highest and HYD was significantly the lowest among the female chicken breeds (P<0.0001). The laying percentage was the highest in LEG and was the lowest in HYD among the breeds (P<0.0001). The average egg weight from 20 to 40 weeks of age was the highest in ARA, followed by LEG and was the lowest in Ogye (P<0.0001), and the adapted breed including LEG and ARA was higher than indigenous breed (P<0.05). Egg mass production was the highest in Korean Leghorn. Collectively, these results show that ARA has the best growth ability, and LEG has the best egg production performance among the used breeds. This suggests that the adapted breed with high commercial performance is important AnGR in Korea.

A Comparison of Bioacoustic Recording and Field Survey as Bird Survey Methods - In Dongbaek-dongsan and 1100-altitude Wetland of Jeju Island - (조류 조사 방법으로써 생물음향 녹음과 현장 조사의 비교 - 제주 동백동산과 1100고지 습지를 대상으로 -)

  • Se-Jun Choi;Kyong-Seok Ki
    • Korean Journal of Environment and Ecology
    • /
    • v.37 no.5
    • /
    • pp.327-336
    • /
    • 2023
  • This study aimed to propose an effective method for surveying wild birds by comparing the results of bioacoustic detection with those obtained through a field survey. The study sites were located at Dongbaek-dongsan and a 1100-altitude wetland in Jeju-do, South Korea. The bioacoustic detection was conducted over the course of 12 months in 2020. For the bioacoustic detection, a Song-meter SM4 device was installed at each study site, recording bird songs in 1-min per hour, .wav, and 44,100 Hz format. The findings of the field survey were taken from the 「Long-term trends of Bird Community at Dongbaekdongsan and 1100-Highland Wetland of Jeju Island, South Korea.」 by Banjade et al. (2019). The results of this study are as follows. First, the avifauna identified using bioacoustic detection comprised 29 families and 46 species in Dongbaek-dongsan, and 16 families and 25 species in the 1100-altitude wetland. Second, based on the song frequency, the dominant species in Dongbaek-dongsan were Hypsipetes amaurotis (Brown-eared Bulbul, 33.62%), Horornis diphone (Japanese Bush Warbler, 12.13%), and Zosterops japonicus (Warbling White-eye, 9.77%). In the 1100-altitude wetland the dominant species were Corvus macrorhynchos (Large-billed Crow, 27.34%), H. diphone (19.43%), and H. amaurotis (16.56%). Third, in the field survey conducted at Dongbaek-dongsan, the number of detected bird species was 39 in 2009, 51 in 2012, 35 in 2015, and 45 in 2018, while the bioacoustic detection identified 46 species. In the field survey conducted in the 1100-altitude wetland, the number of detected bird species was 37 in 2009, 42 in 2012, 34 in 2015, and 38 in 2018, while the bioacoustics detection identified 25 species. Overall, 43.6% of the 78 species detected in the field survey in Dongbaek-dongsan (34 species) were identified using bioacoustic detection, and 38.3% of the 47 species detected in the field survey in the 1100-altitude wetland (18 species) were identified using bioacoustic detection. Fourth, the bioacoustic detection identified 9 families and 12 species of birds in Dongbaek-dongsan, and 3 families and 7 species of birds in the 1100-altitude wetland. No results from field survey were available for these species. The identified birds were predominantly nocturnal, including Otus sunia (Oriental Scops Owl) and Ninox japonica (Northern Boobook), passage migrants, including Larvivora cyane (Siberian Blue Robin), L. sibilans (Rufous-tailed Robin), and winter visitors with a relatively small number of visiting individuals, such as Bombycilla garrulus (Bohemian Waxwing) and Loxia curvirostra (Red Crossbill). Fifth, the birds detected in the field survey but not through bioacoustic detection included 18 families and 48 species in Dongbaek-dongsan and 14 families and 27 species in the 1100-altitude wetland; the most representative families were Ardeidae, Accipitridae, and Muscicapidae. This study is significant as it provides essential data supporting the possibility of an effective survey combining bioacoustic detection with field studies, given the increasing use of bioacoustic devices in ornithological studies in South Korea.

Future hydrological changes in Jeju Island based on CMIP6 climate change scenarios (CMIP6 기후변화 시나리오에 따른 제주도 지역의 미래 수문변화 전망)

  • Kim, Chul-Gyum;Cho, Jaepil;Lee, Jeong Eun;Chang, Sunwoo
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.11
    • /
    • pp.737-749
    • /
    • 2023
  • In this study, we analyzed the hydrological impacts of future climate change on Jeju Island using SSP-based climate change scenarios from 18 climate models and watershed modeling (SWAT-K). Despite discrepancies among climate models, we generally observed an increase in evapotranspiration due to rising future temperatures. Furthermore, a significant increase in runoff and recharge was noted due to increased precipitation. These increasing trends were particularly pronounced in the SSP5-8.5 scenario, and differences among GCM models became more significant in the late 21 century. When compared to the historical period (1981-2010), the projected changes for the far-future period (2071-2100) in the SSP5-8.5 scenario showed a 21.4% increase in precipitation, a 19.2% increase in evapotranspiration, a 40.9% increase in runoff, and a 16.6% increase in recharge on an annual average basis. On a monthly basis in the SSP5-8.5 scenario, precipitation was expected to increase by 24.5% in September, evapotranspiration by 34.1% in April, runoff by 58.1% in October, and recharge by 33.8% in September. To further assess projections based on extreme climate scenarios, we selected two models, CanESM5 and ACCESS-ESM1-5, which represented the maximum and minimum future precipitation forecasts, and compared the hydrological changes in the future scenarios. The results indicated that runoff and recharge rates were relatively higher in the CanESM5 model with the highest precipitation forecast, while evapotranspiration rates were higher in the ACCESS-ESM1-5 model with the lowest precipitation forecast. Based on the climate change scenarios used in this study, the overall available water resources on Jeju Island are more likely to increase. However, since results vary by season and region depending on the climate model and scenario, it is considered necessary to conduct a comprehensive analysis and develop response measures using various scenarios.

Assessment of Eutrophication Using Trophic State Index and Water Quality Characteristics of Saemangeum Lake (새만금호의 수질 특성 및 영양상태지수를 이용한 부영양화 평가)

  • Jong Gu Kim
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.6
    • /
    • pp.587-597
    • /
    • 2023
  • We evaluated the eutrophication of Saemangeum Lake, which causes abnormal growth of algae, using the Carlson index. Eutrophication characteristics of Saemangeum Lake were analyzed. For the study, water quality surveys were conducted at 7 stations in Saemangeum Lake every month in 2021. The concentration of Chl.a was slightly higher in the Mankyeong water system in winter, and slightly higher in the Dongjin water system in spring and summer, but overall, except for some periods, the concentration was similar to or lower than the lake water quality environmental standard of class 3. COD showed water quality similar to or above the lake quality environmental standard of grade 4 in both the Mankyeong and Dongjin water systems in the summer and Autumn. TOC concentrations were within lake water quality standard 3 at all sites. Total phosphorus concentrations exceeded the lake water quality standard of Class 4 and were higher in January and August after rainfall. In the correlation analysis between water quality factors, the correlation of organic matter, total phosphorus, and total nitrogen to salinity was relatively high. This reflected the water quality characteristics of freshwater, brackish water, and seawater areas due to seawater inflow through the drainage gate and freshwater inflow through upstream rivers. According to the characteristics of eutrophication fluctuations in Saemangeum Lake by trophic state index, the indices of Chl.a, SD, and TN showed water quality in the early stage of eutrophication, while the TP index showed a severe eutrophication state. The magnitude of the eutrophication index among water quality components was TSI(TP) > TSI(TN) > TSI(SD) > TSI(CHL) in all water systems. Quadrant analysis of the deviation of TSI(CHL) from TSI(TP) and TSI(SD) on a two-dimensional plane showed that there was no limiting effect of total phosphorus on algal growth in all water systems. In addition, the factors af ecting light attenuation appeared to be dominated by small particulate matter from outside sources.

Five-year monitoring of microbial ecosystem dynamics in the coastal waters of the Yeongheungdo island, Incheon, Korea (대한민국 인천 영흥도 인근 해역 미소생태계의 5년간의 군집구조 변화 모니터링)

  • Sae-Hee Kim;Jin Ho Kim;Yoon-Ho Kang;Bum Soo Park;Myung-Soo Han;Jae-Hyoung Joo
    • Korean Journal of Environmental Biology
    • /
    • v.41 no.3
    • /
    • pp.179-192
    • /
    • 2023
  • In this study, changes in the microbial ecosystem of the Yeongheungdo island coastal waters were investigated for five years to collect basic data. To evaluate the influence of distance from the coast on the microbial ecosystem, four sites, coastal Site (S1) and 0.75, 1.5, and 3 km away from the coast, were set up and the changes in physicochemical and biological factors were monitored. The results showed seasonal changes in water temperature, dissolved oxygen, salinity, and pH but with no significant differences between sites. For nutrients, the concentration of dissolved inorganic nitrogen increased from 6.4 μM in April-June to 16.4 μM in July-November, while that of phosphorus and silicon phosphate increased from 0.4 μM and 2.5 μM in April-June to 1.1 μM and 12.0 μM in July-November, respectively. Notably, phosphorus phosphate concentrations were lower in 2014-2015 (up to 0.2 μM) compared to 2016-2018 (up to 2.2 μM), indicating phosphorus limitation during this period. However, there were no differences in nutrients with distance from the coast, indicating that there was no effect of distance on nutrients. Phytoplankton (average 511 cells mL-1) showed relatively high biomass (up to 3,370 cells mL-1) in 2014-2015 when phosphorus phosphate was limited. Notably, at that time, the concentration of dissolved organic carbon was not high, with concentrations ranging from 1.1-2.3 mg L-1. However, no significant differences in biological factors were observed between the sites. Although this study revealed that there was no disturbance of the ecosystem, further research and more basic data on the microecosystem are necessary to understand the ecosystem of the Incheon.

Scientific Study on Clepsydra of Changgyeonggung Palace, National Treasure for Diagnosis on State of Conservation (국보 창경궁 자격루 누기의 보존상태 진단을 위한 과학적 조사)

  • YOU Harim;LEE Jaesung;YU Jia;JO Hanui;PARK Younghwan;RYU Dongwan
    • Korean Journal of Heritage: History & Science
    • /
    • v.56 no.3
    • /
    • pp.138-156
    • /
    • 2023
  • Some of the metal cultural heritage that make up a considerable proportion of Korea's cultural heritage have been installed and displayed outdoors due to their own functions, roles, and scale. Therefore, more diverse and complex damages can occur outdoors than they are in a stable environment. Therefore, it is necessary to combine accurate diagnosis and systematic survey methods in order to utilize basic data obtained from research results as data for the long-term and continuous conservation management as well as to do the research to diagnose the conservation status of outdoor cultural heritage. The clepsydra(hereinafter referred to as Jagyeongnu) of Changgyeonggung Palace, the National Treasure has been installed and displayed outdoors since it was manufactured. Though regular conservation and maintenance of the Jagyeongnu have been carried out, damage still occurred. Therefore, the scientific research on Jagyeongnu to diagnose the state of conservation was conducted prior to the full-scale conservation treatment. First, the state of conservation was investigated with an examination of basic data, macroscopic inspections and past records of repair history according to the purpose of the research. More detailed examinations were also conducted through the 3D scan, surface pattern investigation, and color difference analysis, and the analysis on materials and contaminants were conducted through P-XRF, FT-IR, and Py-GC/MS. The scientific research reveals that squalane and silicone oil have been applied in the past for conservation treatment and directly exposed to outdoor environmental factors, which caused damage to Jagyeongnu and contaminants such as dust adhered thickly to its surface, accelerating severe damage. A greater incidence of damage was found around the part with relatively high exposure effect, which corresponded with the tendency identified by grouping color difference data. As a result of integrating various research methodologies to diagnose the state of conservation and secure basic data, the causes and types of damage were identified. Furthermore, the process of obtaining digital data to be utilized in various ways, and the color difference analysis presenting visible damage as scientific data and identifying the tendency of damage patterns were confirmed to have been effective.

Effect of Varying Excessive Air Ratios on Nitrogen Oxides and Fuel Consumption Rate during Warm-up in a 2-L Hydrogen Direct Injection Spark Ignition Engine (2 L급 수소 직접분사 전기점화 엔진의 워밍업 시 공기과잉률에 따른 질소산화물 배출 및 연료 소모율에 대한 실험적 분석)

  • Jun Ha;Yongrae Kim;Cheolwoong Park;Young Choi;Jeongwoo Lee
    • Journal of the Korean Institute of Gas
    • /
    • v.27 no.3
    • /
    • pp.52-58
    • /
    • 2023
  • With the increasing awareness of the importance of carbon neutrality in response to global climate change, the utilization of hydrogen as a carbon-free fuel source is also growing. Hydrogen is commonly used in fuel cells (FC), but it can also be utilized in internal combustion engines (ICE) that are based on combustion. Particularly, ICEs that already have established infrastructure for production and supply can greatly contribute to the expansion of hydrogen energy utilization when it becomes difficult to rely solely on fuel cells or expand their infrastructure. However, a disadvantage of utilizing hydrogen through combustion is the potential generation of nitrogen oxides (NOx), which are harmful emissions formed when nitrogen in the air reacts with oxygen at high temperatures. In particular, for the EURO-7 exhaust regulation, which includes cold start operation, efforts to reduce exhaust emissions during the warm-up process are required. Therefore, in this study, the characteristics of nitrogen oxides and fuel consumption were investigated during the warm-up process of cooling water from room temperature to 88℃ using a 2-liter direct injection spark ignition (SI) engine fueled with hydrogen. One advantage of hydrogen, compared to conventional fuels like gasoline, natural gas, and liquefied petroleum gas (LPG), is its wide flammable range, which allows for sparser control of the excessive air ratio. In this study, the excessive air ratio was varied as 1.6/1.8/2.0 during the warm-up process, and the results were analyzed. The experimental results show that as the excessive air ratio becomes sparser during warm-up, the emission of nitrogen oxides per unit time decreases, and the thermal efficiency relatively increases. However, as the time required to reach the final temperature becomes longer, the cumulative emissions and fuel consumption may worsen.

Alveolar ridge preservation using granulation tissue for esthetic implant restoration on maxillary anterior tooth (상악 전치부의 심미적 임플란트 수복을 위한 육아 조직(Granulation tissue)을 이용한 치조제 보존술)

  • Lee Chang Kyun
    • Journal of the Korean Academy of Esthetic Dentistry
    • /
    • v.32 no.1
    • /
    • pp.16-22
    • /
    • 2023
  • Esthetic factors are very important in the success of maxillary anterior implant restoration. However, achieving esthetic results is difficult, especially in cases where periodontitis has resulted in severe alveolar bone loss. In the case of maxillary anterior teeth, the alveolar ridge resorption that begins immediately after tooth extraction interferes with the esthetic implant restoration. Therefore immediate implant placement can be performed to minimize the alveolar ridge resorption. However, in severe bone loss cases, immediate implant placement could result in esthetic failure, and this result might cause irreparable problems. We can also perform alveolar ridge preservation and then place implants later. On JCP published in 2019, there is the consensus of European academy of periodontology on the extraction socket management and the timing of implant placement. This consensus states that alveolar ridge preservation should be considered when there is severe labial bone loss in an esthetically important area such as maxillary anterior region. On performing the alveolar ridge preservation, we cannot obtain the primary wound closure, so secondary wound healing is induced with open membrane technique or soft tissue grafting should be performed for primary wound closure. However, the secondary wound healing can have a negative impact on bone regeneration, and soft tissue grafting such as FGG or CT graft can be burdensome for both patients and dentists. On the other hand, by using the granulation tissue in the extraction socket, primary closure can be achieved without soft tissue grafting. Also some studies have shown that granulation tissue in periodontal defects contains stem cells that may help in tissue regeneration. Based on this, implant restorations were performed on maxillary anterior teeth with severe alveolar bone loss by alveolar ridge preservation using granulation tissue. In spite of the severe bone defect of the extraction socket, relatively esthetic results could be obtained in implant restorations.