• Title/Summary/Keyword: relative storey displacement

Search Result 14, Processing Time 0.017 seconds

Effects of the isolation parameters on the seismic response of steel frames

  • Deringol, Ahmet H.;Bilgin, Huseyin
    • Earthquakes and Structures
    • /
    • v.15 no.3
    • /
    • pp.319-334
    • /
    • 2018
  • In this paper, an analytical study was carried out to propose an optimum base-isolated system for the design of steel structures equipped with lead rubber bearings (LRB). For this, 5 and 10-storey steel moment resisting frames (MRFs) were designed as Special Moment Frame (SMF). These two-dimensional and three-bay frames equipped with a set of isolation systems within a predefined range that minimizes the response of the base-isolated frames subjected to a series of earthquakes. In the design of LRB, two main parameters, namely, isolation period (T) and the ratio of strength to weight (Q/W) supported by isolators were considered as 2.25, 2.5, 2.75 and 3 s, 0.05, 0.10 and 0.15, respectively. The Force-deformation behavior of the isolators was modelled by the bi-linear behavior which could reflect the nonlinear characteristics of the lead-plug bearings. The base-isolated frames were modelled using a finite element program and those performances were evaluated in the light of the nonlinear time history analyses by six natural accelerograms compatible with seismic hazard levels of 2% probability of exceedance in 50 years. The performance of the isolated frames was assessed in terms of roof displacement, relative displacement, interstorey drift, absolute acceleration, base shear and hysteretic curve.

Enhancing seismic performance of ductile moment frames with delayed wire-rope bracing using middle steel plate

  • Ghalandari, Akram;Ghasemi, Mohammad Reza;Dizangian, Babak
    • Steel and Composite Structures
    • /
    • v.28 no.2
    • /
    • pp.139-147
    • /
    • 2018
  • Moment frames have considerable ductility against cyclic lateral loads and displacements; however, sometimes this feature causes the relative displacement to exceed the permissible limits. This issue can bring unfavorable hysteretic behavior on the frame due to the reduction in the stiffness and resistance against lateral loads. Most of common bracing systems usually control lateral displacements through increasing stiffness while result in decreasing the capacity for energy absorption. This has direct effect on hysteresis curves of moment frames. Therefore, a system that is capable of both having the capacity of energy absorption as well as controlling the displacements without a considerable increase in the stiffness is quite important. This paper investigates retrofitting of a single-storey steel moment frame using a delayed wire-rope bracing system equipped with the ductile middle steel plate. The steel plate is considered at the middle intersection of wire ropes, where it causes cables to be continuously in tension. This integrated system has the advantage of reducing considerable stiffness of the frame compared to cross bracing systems as a result of which it could also preserve the frame's energy absorption capacity. In this paper, FEM models of a delayed wire-rope bracing system equipped by steel plates with different geometries have been studied, validated, and compared with other researchers' laboratory test results.

Parametric analysis of hybrid outrigger system under wind and seismic loads

  • Neethu Elizabeth Johna;Kiran Kamath
    • Structural Engineering and Mechanics
    • /
    • v.86 no.4
    • /
    • pp.503-518
    • /
    • 2023
  • In tall constructions, the outriggers are regarded as a structural part capable of effectively resisting lateral loads. This study analyses the efficacy of hybrid outrigger system in high rise RCC building for various structural parameters identified. For variations in α, which is defined as the ratio of the relative flexural stiffness of the core to the axial rigidity of the column, static and dynamic analyses of hybrid outrigger system having a virtual and a conventional outrigger at two distinct levels were conducted in the present study. An investigation on the optimal outrigger position was performed by taking the results from absolute maximum inter storey drift ratio (ISDmax), roof acceleration (accroof), roof displacement (disproof), and base bending moment under both wind and seismic loads on analytical models having 40, 60 and 80 storeys. An ideal performance index parameter was introduced and was utilized to obtain the optimal position of the hybrid outrigger system considering the combined response of ISDmax, accroof, disproof and, criteria required for the structure under wind and seismic loads. According to the behavioural study, increasing the column area and outrigger arm length will maximise the performance of the hybrid outrigger system. The analysis results are summarized in a flowchart which provides the optimal positions obtained for each dependent parameter and based on ideal performance index which can be used to make initial suggestions for installing a hybrid outrigger system.

Structural Behavior Evaluation of NRC Beam-Column Connections (NRC 보-기둥 접합부의 구조적 거동 평가)

  • Jeon, Ji-Hwan;Lee, Sang-Yun;Kim, Seung-Hun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.1
    • /
    • pp.73-80
    • /
    • 2022
  • In this study, details of NRC beam-column connections were developed in which beam and columns pre-assembled in factories using steel angles were bolted on site. The developed joint details are NRC-J type and NRC-JD type. NRC-J type is a method of tensile joining with TS bolts to the side and lower surfaces of the side plate of the NRC column and the end plate of the NRC beam. NRC-JD type has a rigid joint with high-strength bolts between the NRC beam and the side of the NRC column for shear, and with lap splices of reinforcing bar penetrating the joint and the beam main reinforcement for bending. For the seismic performance evaluation of the joint, three specimens were tested: an NRC-J specimen and NRC-JD specimen with NRC beam-column joint details, and an RC-J specimen with RC beam-column joint detail. As a result of the repeated lateral load test, the final failure mode of all specimens was the bending fracture of the beam at the beam-column interface. Compared to the RC-J specimen, the maximum strength of the specimen by the positive force was 10.1% and 29.6% higher in the NRC-J specimen and the NRC-JD specimen, respectively. Both NRC joint details were evaluated to secure ductility of 0.03 rad or more, the minimum total inter-story displacement angle required for the composite intermediate moment frame according to the KDS standard (KDS 41 31 00). At the slope by relative storey displacemet of 5.7%, the NRC-J specimen and the NRC-JD specimen had about 34.8% and 61.1% greater cumulative energy dissipation capacity than the RC specimen. The experimental strength of the NRC beam-column connection was evaluated to be 30% to 53% greater than the theoretical strength according to the KDS standard formula, and the standard formula evaluated the joint performance as a safety side.