• Title/Summary/Keyword: relative stiffness

Search Result 373, Processing Time 0.114 seconds

Lateral Behavior of Single Rigid Driven Pile in Non-Homogeneous Sand (비균질 지반에서 항타 관입한 단일 강성말뚝의 수평거동 연구)

  • 김영수;김병탁
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.6
    • /
    • pp.167-185
    • /
    • 1999
  • A series of model tests was performed to find the characteristics of lateral behavior of single rigid pile. This paper shows the results of model tests on the lateral behavior of single rigid driven pile in non-homogeneous(two layered) Nak-Dong River sands. The purpose of this paper is to investigate the effect of the ratio of lower layer thickness to embedded pile length, the coefficient ratio of the subgrade reaction and the pile construction conditions(driven & embedded piles) on the characteristics of lateral behavior of single pile. The results of model tests show that the lateral behavior in non-homogeneous soil depends upon drop energy considerably, that is, in the case of H/L=0.75, as the drop energy increases three times the decrease percentage increases about 2.12 times. In the driven pile with non-homogeneous soil of $E_{h1}/E_{h2}=5.56$, the effect of upper layer with large stiffness on the decrease of lateral deflection is remarkably smaller than embedded pile. In non-homogeneous soil, the maximum bending moment of driven pile is in the range of 100 132% in comparison with embedded pile. The reason is that the stiffness of soil around pile increases with drop vibration and so the pile behavior is similar to the flexible pile behavior by means of the increase of relative stiffness of pile, In this paper, the experimental equations for lateral load and H/L on $y_D/y_E \; & \; MBM_D/MBM_E$ are suggested from model tests.

  • PDF

Strengthen Effect of RC Beam Overlaid or Repaired by VES-LMC (초속경 라텍스개질콘크리트로 덧씌우기 및 보수된 철근콘크리트보의 보강효과)

  • Choi, Sung-Yong;Yun, Kyong-Ku;Choi, Seung-Sic
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.4
    • /
    • pp.423-430
    • /
    • 2008
  • VES-LMC (very-early strength latex-modified concrete) has been widely used as repair material for bridge deck overlay or rehabilitation, because the overlaid or repaired could be opened to the traffic after 3 hours of curing. Although the field performance of VES-LMC generally indicates that it has an excellent bonding to the substrate and shows a long term performance, little quantitative data or research results have been presented in the literature on structural studies. The purpose of this study was to investigate the flexural behavior, interfacial performance, crack propagation, and strengthen effect of RC beam overlaid or repaired by VES-LMC through the 4-point flexural loading test. Two different types of RC beam were fabricated for repair and rehabilitation types. The test result showed that the strengthen effect, in term of flexural stiffness, increases as the depth of repair or overlay increases. More than 40% of stiffness was improved when the depth of repair was up to steel position. However, there was a little difference between 80 mm and 120 mm repaired beam. This means the repair depth must be considered. The interfacial behavior data showed that the repaired or overlaid beams had a little relative displacement. This means that two materials behave comparatively acting together. However, there were two specimens which had large displacement at the interface, because of poor bond strength. This suggested that interface treatment is one of the most important jobs in composite beams.

Experimental Analysis of Large Size Concrete-Filled Glass Fiber Reinforced Composite Piles Subjected to the Flexural Compression (대구경 콘크리트 충전 복합소재 파일의 휨-압축 거동에 대한 실험적 분석)

  • Lee, Sung Woo;Choi, Sokhwan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.5A
    • /
    • pp.519-529
    • /
    • 2009
  • Fiber reinforced composite materials have various advantages in mechanical and chemical aspects. Not only high fatigue and chemical resistance, but also high specific strength and stiffness are attained, and therefore, damping characteristics are beneficial to marine piles. Since piles used for marine structures are subjected to compression and bending as well, detailed research is necessary. Current study examine the mechanical behavior under flexural and/or compressive loads using concrete filled fiber reinforced plastic composite piles, which include large size diameter. 25 pile specimens which have various size of diameters and lengths were fabricated using hand lay-up or filament winding method to see the effect of fabrication method. The inner diameters of test specimens ranged from 165 mm to 600 mm, and the lengths of test specimens ranged from 1,350 mm to 8,000 mm. The strengths of the fill-in concrete were 27 and 40 MPa. Fiber volumes used in circumferential and axial directions are varied in order to see the difference. For some tubes, spiral inner grooves were fabricated to reduce shear deformation between concrete and tube. It was observed that the piles made using filament winding method showed higher flexural stiffness than those made using hand lay-up. The flexural stiffness of piles decreases from the early loading stage, and this phenomenon does not disappear even when the inner spiral grooves were introduced. It means that the relative shear deformation between the concrete and tube wasn't able to be removed.

Bond Strength of Super-CFRP Rod in Concrete

  • Seo, Sung-Tag
    • International Journal of Concrete Structures and Materials
    • /
    • v.18 no.1E
    • /
    • pp.29-34
    • /
    • 2006
  • Elastic modulus, tensile and bond capacities are important factors for developing an effective reinforcing action of a flexural member as a reinforcing material for concrete structures. Reinforcement must have enough bond capacity to prevent the relative slip between concrete and reinforcement. This paper presents an experimental study to clarify the bond capacity of prestressed carbon fiber reinforced polymer(CFRP) rod manufactured by an automatic assembly robot. The bond characteristics of CFRP rods with different pitch of helical wrapping were analyzed experimentally. As the result, all types of CFRP rods show a high initial stiffness and good ductility. The mechanical properties of helical wrapping of the CFRP rods have an important effect on the bond of these rods to concrete after the bond stress reached the yield point. The stress-slip relationship analyzed from the pull-out test of embedded cables within concrete was linear up to maximum bond capacity. The deformation within the range of maximum force seems very low and was reached after approximately 1 mm. The average bond capacity of CF20, CF30 and CF40 was about 12.06 MPa, 12.68 MPa and 12.30 MPa, respectively. It was found that helical wrapping was sufficient to yield bond strengths comparable to that of steel bars.

Shaft resistance of bored cast-in-place concrete piles in oil sand - Case study

  • Barr, L.;Wong, R.C.K.
    • Geomechanics and Engineering
    • /
    • v.5 no.2
    • /
    • pp.119-142
    • /
    • 2013
  • Pile load tests using Osterberg cells (O-cell) were conducted on cast-in-place concrete piles founded in oil sand fill and in situ oil sand at an industrial plant site in Fort McMurray, Alberta, Canada. Interpreted pile test results show that very high pile shaft resistance (with the Bjerrum-Burland or Beta coefficient of 2.5-4.5) against oil sand could be mobilized at small relative displacements of 2-3% of shaft diameter. Finite element simulations based on linear elastic and elasto-plastic models for oil sand materials were used to analyze the pile load test measurements. Two constitutive models yield comparable top-down load versus pile head displacement curves, but very different behaviour in mobilization of pile shaft and end bearing resistances. The elasto-plastic model produces more consistent matching in both pile shaft and end bearing resistances whereas the linear elastic under- and over-predicts the shaft and end bearing resistances, respectively. The mobilization of high shaft resistance in oil sand under pile load is attributed to the very dense and interlocked structure of oil sand which results in high matrix stiffness, high friction angle, and high shear dilation.

Evaluation on the Performance of Deep Excavation by Using PIV Technique

  • Abbas, Qaisar;Song, Ju-sang;Yoo, Chung-Sik
    • Journal of the Korean Geosynthetics Society
    • /
    • v.16 no.4
    • /
    • pp.191-210
    • /
    • 2017
  • The concern study, present the results of experimental study on the performance of deep excavation by using image processing technique particle image velocimetry (PIV). The purpose of present study is to check the application of PIV for the successive ground deformation during deep excavation. To meet the objectives of concern study, a series of reduce scale model test box experiments are performed by considering the wall stiffness, ground water table effect and ground relative density. The results are presented in form of contour and vector plots and further based on PIV analysis wall and ground displacement profile are drawn. The results of present study, indicate that, the PIV technique is useful to demonstrate the ground deformation zone during the successive ground excavation as the degree of accuracy in PIV analysis and measured results with LVDT are within 1%. Further the vector and contours plot effectively demonstrate the ground behavior under different conditions and the PIV analysis results fully support the measured results.

A nonlinear model for ultimate analysis and design of reinforced concrete structures

  • Morfidis, Konstantinos;Kiousis, Panos D.;Xenidis, Hariton
    • Computers and Concrete
    • /
    • v.14 no.6
    • /
    • pp.695-710
    • /
    • 2014
  • This paper presents a theoretical and computational approach to solve inelastic structures subjected to overloads. Current practice in structural design is based on elastic analysis followed by limit strength design. Whereas this approach typically results in safe strength design, it does not always guarantee satisfactory performance at the service level because the internal stiffness distribution of the structure changes from the service to the ultimate strength state. A significant variation of relative stiffnesses between the two states may result in unwanted cracking at the service level with expensive repairs, while, under certain circumstances, early failure may occur due to unexpected internal moment reversals. To address these concerns, a new inelastic model is presented here that is based on the nonlinear material response and the interaction relation between axial forces and bending moments of a beam-column element. The model is simple, reasonably accurate, and computationally efficient. It is easy to implement in standard structural analysis codes, and avoids the complexities of expensive alternative analyses based on 2D and 3D finite-element computations using solid elements.

An Analysis on Cross Flows around a Group of Circular Cylinders (횡유동장에 놓인 원형 실린더 군 주위의 유동장 해석)

  • Sim, Woo-Gun;Kim, Tae-Han
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.582-587
    • /
    • 2001
  • A numerical method using FLUENT code was employed to investigate fluid drag and lift forces on a cylinder in a group of circular cylinders, subjected to a uniform cross flow. The cylinders can be arranged in tandem or in a staggered arrangements relative to the free stream flow. A vortex street behind the cylinder pairs or jets between the cylinders forms according to the arrangements. Vibration on a cylinder can occurs due to vortex shedding, fluid-elastic stiffness and wake galloping. The flow is first investigated and then the forces acting on the cylinder are calculated. The lift and drag forces on an elastically mounted cylinder in the wake of an upstream fixed cylinder arise from the mean flow plus velocity and pressure gradients in the wake. The analytical results of two staggered cylinder were compared with the existing experimental ones for validation of the present method. The analytical results of the forces were in good agreement with the experimental ones. The present method can be used for the analysis of the fluid induced vibration where the group of circular cylinders are subjected to a cross flow.

  • PDF

Design of High Speed Composite Air Spindle System (초고속 복합재료 공기정압 주축의 설계)

  • 장승환;이대길;한흥삼
    • Composites Research
    • /
    • v.14 no.1
    • /
    • pp.47-56
    • /
    • 2001
  • In order to enhance high speed stability the composite air spindle system composed of a high modulus carbon fiber composite shaft, powder contained epoxy composite squirrel cage rotor and aluminum tool holder was designed and manufactured. For the optimal design of the composite air spindle system, the stacking sequence and thickness of the composite shaft were selected by considering the fundamental natural frequency and deformation of the system. The analysis gave results that the composite air spindle system had 36% higher natural frequency relative to a conventional air spindle system. The dynamic characteristics of the composite spindle system were compared with those of a conventional steel air spindle system. From the calculated and test results, it was concluded that the composite shaft and the power contained composite rotor were able to enhance the dynamic characteristics of the spindle system effectively due to the low inertia and high speific stiffness of the composite materials.

  • PDF

Effect of Ground Water Table on Deep Excavation Performance (지반 굴착시 지하수위가 벽체에 미치는 영향 분석)

  • Song, Ju-Sang;ABBAS, QAISAR;Yoo, Chung-Sik
    • Journal of the Korean Geosynthetics Society
    • /
    • v.17 no.3
    • /
    • pp.33-46
    • /
    • 2018
  • This study presents the experimental results on the performance of deep excavation by using image processing technique particle image velocimetry (PIV). The purpose of present study is to be checked the application of PIV for the successive ground deformation during deep excavation. To meet the objectives of concern study, a series of reduce scale model test box experiments were performed by considering the wall stiffness, ground water table effect and ground relative density. The results were presented in form of contours and vector plot and further based on PIV analysis wall and ground displacement profile were drawn. The results of present study, indicate that, the PIV technique is useful to demonstrate the ground deformation zone during the successive ground excavation.