• Title/Summary/Keyword: relative precision

Search Result 697, Processing Time 0.028 seconds

Cutting Process Modeling of End-Milling in a Closed-Loop Configuration (공구 공작물간의 상대변위를 고려한 엔드밀링의 절삭공정 모델링)

  • 황철현;조동우
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.1059-1062
    • /
    • 1995
  • In cutting system, relative displacement between rool and workpiece is very important. Even though there have been so many works for modeling cutting process of end-milling, most of them have considered only one displacement of either tool or workpiece instead of both. In this paper, the relative displacement between tool and workpiece is considered for modeling cutting process of end-milling using simple experimental modal analysis and cutting force simulation program is developed. In cutting force model, instantaneous uncut chip thickness model is used and Runge-Kutta method is used for the simulation of time varying cutting system.

  • PDF

Modified Ranked Ordering Set Samples for Estimating the Population Mean

  • Kim, Hyun-Gee;Kim, Dong-Hee
    • Communications for Statistical Applications and Methods
    • /
    • v.14 no.3
    • /
    • pp.641-648
    • /
    • 2007
  • We propose the new sampling method, called modified ranked ordering set sampling (MROSS). Kim and Kim (2003) suggested the sign test using the ranked ordering set sampling (ROSS), and showed that the asymptotic relative efficiency (ARE) of ROSS against RSS for sign test increases as sample size does. We propose the estimator for the population mean using MROSS. The relative precision (RP) of estimator of the population mean using MROSS method with respect to the usual estimator using modified RSS is higher, and when the underlying distribution is skewed, the bias of the proposed estimator is smaller than that of several ranked set sampling estimators.

An upper bound analysis for closed-die forging of spur gear forms (스퍼어 기어의 밀폐단조에 관한 상계해석)

  • Park, J.C.;Hur, K.D.;Park, J.U.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.11 no.4
    • /
    • pp.26-37
    • /
    • 1994
  • A kinematically admissible velocity field for the numerical analysis of closed-die forging process of spur gear is proposed. The velocity field is divided into three regions of deformation. In the analysis, the involute curve is approximated to be straight line and the upper-bound method is used to calculate energy dissipation rate. A constant frictional frictional factor has been assumed on the contacting surfaces. The effects of root diameter, number of teeth, and friction factor are determined on the relative forging pressure. The frictionless relative pressure is independent of root diameter for the same number of teeth, but increases with the number of teeth on a given root diameter. In the presence of friction, the relative forging presure increasing root diameter at the start of forging, but decreases with increasing root diameter in the processing of forging.

  • PDF

Relative Motion Control Methodology Using the Minimum Relative Error Between Two Systems (두 시스템간의 편차 최소화를 적용한 상대적 동작제어 방법)

  • 김성권
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.12
    • /
    • pp.994-1000
    • /
    • 2003
  • A new relative motion control methodology for a following system to an independent leading system is proposed for controlling relative position, velocity, and tension etc. It is based on maintaining minimum relative error between two independent systems. The control command of the following system to a leading system is generated by adding the current command and the output of the relative error compensation. The proposed control method is implemented on the experimental equipment which is a wire winding-unwinding system to control the tension of the line. The results show the unwinding system(follower) following the independent motion of the winding system(leader) to control the constant tension of the line in order to keep the roller dancer in reference position. The relative motion control method proposed in this paper can be applied to high precision equipment for unwinding and winding fine wire, fine fiber, and tape etc.

A Study on the Development of Analysis Model for Prediction of Relative Deformation between Cutting Tool and Workpiece (공구와 공작물의 상대적 변형량 예측을 위한 해석모델 개발에 관한 연구)

  • Lee, Mun-Jae;Hwang, Young-Kug;Lee, Choon-Man
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.4
    • /
    • pp.20-26
    • /
    • 2010
  • Any relative deformation between the cutting tool and the workpiece at the machining point, results directly in form and dimensional errors. The source of relative deformations between the cutting tool and the workpiece at the contact point may be due to thermal, weight, and cutting forces. This paper presents an investigation into dry and fluid machining with the objective of evaluating shape accuracy effect for the turning process of Al6061. The thermal distribution of cutting tool and cutting force was predicted using finite element method after measuring the temperature of the tool holder. To reach this goal, shape accuracy turning experiments are carried out according to cutting conditions with dry and fluid machining methods. The variable cutting conditions are cutting speed, depth of cutting and feed rate.

Prediction of Relative Deformation between Cutting Tool and Workpiece by Cutting Force [$1^{st}$ paper] (절삭력에 의한 공구와 공작물의 상대적 변형량 예측 [1])

  • Hwang, Young-Kug;Lee, Choon-Man
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.9
    • /
    • pp.86-93
    • /
    • 2010
  • Any relative deformation between the cutting tool and the workpiece at the machining point, results directly in form and dimensional errors. The source of relative deformations between the cutting tool and the workpiece at the contact point may be due to thermal, weight, and cutting forces. Thermal and weight deformations can be measured at various positions of the machine tool and stored in the compensation registers of the CNC unit and compensated the errors during machining. However, the cutting force induced errors are difficult to compensate because estimation of cutting forces are difficult. To minimize the error induced by cutting forces, it is important to improve the machining accuracy. This paper presents the pre-calculated method of form error induced by cutting forces. In order to estimate cutting forces, Isakov method is used and the method is verified by comparing with the experimental results. In order to this, a cylindrical-outer-diameter turning experiments are carried out according to cutting conditions.

A Study on the Effect of Pattern Density and it`s Modeling for ILD CMP (패턴 웨이퍼의 화학기계적 연마시 패턴 밀도의 영향과 모델링에 관한 연구)

  • Hong, Gi-Sik;Kim, Hyung-Jae;Jeong, Hae-Do
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.1
    • /
    • pp.196-203
    • /
    • 2002
  • Generally, non-uniformity and removal rate are important factors on measurements of both wafer and die scale. In this study, we verify the effects of the pressure and relative velocity on the results of the chemical mechanical polishing and the effect of pattern density on inter layer dielectric chemical mechanical polishing of patterned wafer. We suggest an appropriate modeling equation, transformed from Preston\`s equations which was used in glass polishing, and simulate the removal rate of patterned wafer in chemical mechanical polishing. Results indicate that the pressure and relative velocity are dominant factors for the chemical mechanical polishing and pattern density effects on removal rate of pattern wafers in die scale. The modeling is well agreed to middle and low density structures of the die. Actually, the die used in Fab. was designed to have an appropriate density, therefore the modeling will be suitable for estimating the results of ILD CMP.