Journal of Institute of Control, Robotics and Systems
/
v.5
no.2
/
pp.228-236
/
1999
In this paper, we propose visual-based self-localization and obstacle detection algorithms for indoor mobile robots. The algorithms do not require calibration, and can be worked with only single image by using the projective invariant relationship between natural landmarks. We predefine a risk zone without obstacles for a robot, and update the image of the risk zone, which will be used to detect obstacles inside the zone by comparing the averaging image with the current image of a new risk zone. The positions of the robot and the obstacles are determined by relative positioning. The method does not require the prior information for positioning robot. The robustness and feasibility of our algorithms have been demonstrated through experiments in hallway environments.
Journal of information and communication convergence engineering
/
v.8
no.6
/
pp.709-715
/
2010
This paper represents a map building and localization system for mobile robot. Map building and navigation is a complex problem because map integrity cannot be sustained by odometry alone due to errors introduced by wheel slippage, distortion and simple linealized odometry equation. For accurate localization, we propose sensor fusion system using encoder sensor and indoor GPS module as relative sensor and absolute sensor, respectively. To build a map, we developed a sensor based navigation algorithm and grid based map building algorithm based on Embedded Linux O.S. A wall following decision engine like an expert system was proposed for map building navigation. We proved this system's validity through field test.
Transactions of the Korean Society of Automotive Engineers
/
v.22
no.3
/
pp.50-59
/
2014
This paper proposes a method of localization of vehicle especially the horizontal position for the purpose of recognizing the driving lane. Through tracking road signs, the relative position between the vehicle and the sign is calculated and the absolute position is obtained using the known information from the regulation for installation. The proposed method uses Kalman filter for road sign tracking and analyzes the motion using the pinhole camera model. In order to classify the road sign, ORB(Oriented fast and Rotated BRIEF) features from the input image and DB are matched. From the absolute position of the vehicle, the driving lane is recognized. The Experiments are performed on videos from the highway driving and the results shows that the proposed method is able to compensate the common GPS localization errors.
IEIE Transactions on Smart Processing and Computing
/
v.2
no.4
/
pp.208-215
/
2013
Early iterations of the existing Global Positioning System (GPS)-based or radio lateration technique-based vehicle localization algorithms suffer from flip ambiguities, forged relative location information and location information exchange overhead, which affect the subsequent iterations. This, in turn, results in an erroneous neighbor-vehicle map. This paper proposes an extended information overlap measure (EIOM) algorithm to reduce the flip error rates by exchanging the neighbor-vehicle presence features in binary information. This algorithm shifts and associates three pieces of information in the Moore neighborhood format: 1) feature information of the neighboring vehicles from a vision-based environment sensor system; 2) cardinal locations of the neighboring vehicles in its Moore neighborhood; and 3) identification information (MAC/IP addresses). Simulations were conducted for multi-lane highway scenarios to compare the proposed algorithm with the existing algorithm. The results showed that the flip error rates were reduced by up to 50%.
Precast concrete (PC) members are currently being employed for general construction or partial replacement to reduce construction period. As assembly work in PC construction requires connecting PC members accurately, measuring the 6-DOF (degree of freedom) relative displacement is essential. Multiple planar markers and camera-based displacement measurement systems can monitor the 6-DOF relative displacement of PC members. Conventional methods, such as direct linear transformation (DLT) for homography estimation, which are applied to calculate the 6-DOF relative displacement between the camera and marker, have several major problems. One of the problems is that when the marker is partially hidden, the DLT method cannot be applied to calculate the 6-DOF relative displacement. In addition, when the images of markers are blurred, error increases with the DLT method which is employed for its estimation. To solve these problems, a hybrid method, which combines the advantages of the DLT and MCL (Monte Carlo localization) methods, is proposed. The method evaluates the 6-DOF relative displacement more accurately compared to when either the DLT or MCL is used alone. Each subsystem captures an image of a marker and extracts its subpixel coordinates, and then the data are transferred to a main system via a wireless communication network. In the main system, the data from each subsystem are used for 3D visualization. Thereafter, the real-time movements of the PC members are displayed on a tablet PC. To prove the feasibility, the hybrid method is compared with the DLT method and MCL in real experiments.
Journal of the Institute of Electronics and Information Engineers
/
v.49
no.9
/
pp.362-369
/
2012
Recently, a target detection based on a distributed sensor network has been much studied in active sonar. Zhou et al. proposed a target localization method using line fitting based on a distributed sensor network which consists of low complexity sensors that only report binary detection results. This method has three advantages relative to ML estimator. First, there is no need to estimate propagation model parameters. Second, the computation is simple. Third, it only use sensors with "detection", which implies less data to be collected by data processing center. However, this method has larger target localization error than the ML estimator. In this paper, a target localization method which modifies Zhou's method is proposed for reducing the localization error. The modified method shows the performance improvement that the target localization error is reduced by 40.7% to Zhou's method in the point of RMSE.
Saitov, Dilshat;Choi, Jeong Won;Park, Ju Hyun;Lee, Suk Gyu
IEMEK Journal of Embedded Systems and Applications
/
v.3
no.2
/
pp.102-108
/
2008
This paper describes a mapping and localization based on wave algorithm[11] and Kalman filter for effective SLAM. Each robot in a multi robot system has its own task such as building a map for its local position. By combining their data into a shared map, the robot scans actively seek to verify their relative locations. For simultaneous localization the algorithm which is well known as Kalman Filter (KF) is used. For modelling the robot position we wish to know three parameters (x, y coordinates and its orientation) which can be combined into a vector called a state variable vector. The Kalman Filter is a smart way to integrate measurement data into an estimate by recognizing that measurements are noisy and that sometimes they should ignored or have only a small effect on the state estimate. In addition to an estimate of the state variable vector, the algorithm provides an estimate of the state variable vector uncertainty i.e. how confident the estimate is, given the value for the amount of error in it.
Indoor localization using an artificial marker plays a key role for a robot to be used in a service environment. A number of researchers have predefined the positions of markers and attached them to the positions in order to reduce the error of the localization method. However, it is practically impossible to attach a marker to the predetermined position accurately. In order to visualize the position of an object in the environment based on the marker attached to them, it is necessary to consider a change of marker's position or the addition of a marker because of moving the existed object or adding a new object. In this paper, we studied the method to estimate the artificial marker's global position for the visualization of environment. The system calculates the relative distance from a reference marker to others repeatedly to estimate the marker's position. When the marker's position is changed or new markers are added, our system can recognize the changed situation of the markers. To verify the proposed system, we attached 12 markers at regular intervals on the ceiling and compared the estimation result of the proposed method and the actual distance. In addition, we compared the estimation result when changing the position of an existing marker or adding a new marker.
For a practical mobile robot team such as carrying out a search and rescue mission in a disaster area, the localization have to be guaranteed even in an environment where the network infrastructure is destroyed or a global positioning system (GPS) is unavailable. The proposed architecture supports localizing robots seamlessly by finding their relative locations while moving from a global outdoor environment to a local indoor position. The proposed schemes use a cooperative positioning system (CPS) based on the two-way ranging (TWR) technique. In the proposed TWR-based CPS, each non-localized mobile robot act as tag, and finds its position using bilateral range measurements of all localized mobile robots. The localized mobile robots act as anchors, and support the localization of mobile robots in the GPS-shadow region such as an indoor environment. As a tag localizes its position with anchors, the position error of the anchor propagates to the tag, and the position error of the tag accumulates the position errors of the anchor. To minimize the effect of error propagation, this paper suggests the new scheme of full-mesh based CPS for improving the position accuracy. The proposed schemes assuring localization were validated through experiment results.
Journal of the Korean Institute of Intelligent Systems
/
v.20
no.4
/
pp.586-591
/
2010
In this paper, we propose the localization method of mobile robot using SURF(Speeded-Up Robust Features) and Particle filter. The proposed method is as follows: First, we seek the Landmark from the obtained image using SURF in order to find the first rigorous position of mobile robot. Second, we obtain the distance from obstacles using ultrasonic sensors in order to create the relative position of mobile robot. And then, we estimate the localization of mobile robot using Particle filter about movement of mobile robot. Finally, we show the feasibility of the proposed method through some experiments.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.