• 제목/요약/키워드: relative error

검색결과 1,544건 처리시간 0.028초

다축 힘/모멘트센서의 불확도평가 및 응용에 관한 연구 (Uncertainty Evaluation of a Multi-axis Force/Moment Sensor and Its Application)

  • 김갑순
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2001년도 춘계학술대회 논문집
    • /
    • pp.177-180
    • /
    • 2001
  • This paper describes the calibration method and the evaluation method of relative expanded uncertainty for a multi-axis force/moment sensor. This sensor should be calibrated to be use in the industry. Now, the confidence of the calibration result is expressed with interference error. But it is no inaccurate, because an interference error, besides, a reproducibility error of the sensor, a error of this six-axis force/moment sensor calibrator, and so on. Thus, in order to accurately evaluate the relative expanded uncertainty of it, the concept of the uncertainty should be induced, and these errors must be contained in the relative expanded uncertainty. In this paper, the calibration method is exhibited and the evaluation method of the relative expanded uncertainty is also exhibited. And, a six-axis force/moment sensor was calibrated and the relative expanded uncertainty was evaluated.

  • PDF

Single Frequency GPS Relative Navigation for Autonomous Rendezvous and Docking Mission of Low-Earth Orbit Cube-Satellites

  • Shim, Hanjoon;Kim, O-Jong;Yu, Sunkyoung;Kee, Changdon;Cho, Dong-Hyun;Kim, Hae-Dong
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제9권4호
    • /
    • pp.357-366
    • /
    • 2020
  • This paper addressed a relative navigation method for autonomous rendezvous and docking of cube-satellites using single frequency Differential GPS (DGPS) under the intermittent communication between satellites. Since the ionospheric error of GPS measurement is variable depending on the visible satellites, a few meters error of relative navigation is occurred in the Low-Earth Orbit (LEO) environment. Therefore, it is essential to remove the ionospheric error to perform relative navigation. Besides, an intermittent communication period for receiving GPS measurements of the target satellite is limited for getting information every sampling time. To solve this problem, a method combining range domain DGPS and orbit propagation is proposed in this paper. The proposed method improves the performance of DGPS by using Hatch filter and solves an intermittent communication problem by estimating the relative position and velocity using Hill-Clohessy-Wiltshire Equation. Through the simulation, it is verified that the suggested algorithm provides the relative position error within RMS 0.5 m and the relative velocity error within RMS 3 cm/s. Furthermore, it has the advantage that it is suitable for real-time implementation using single-frequency GPS measurements and is computationally efficient.

상대오차예측을 이용한 자동차 보험의 손해액 예측: 패널자료를 이용한 연구 (Predicting claim size in the auto insurance with relative error: a panel data approach)

  • 박흥선
    • 응용통계연구
    • /
    • 제34권5호
    • /
    • pp.697-710
    • /
    • 2021
  • 상대오차를 이용한 예측법은 상대오차(혹은 퍼센트오차)가 중요시되는 분야, 특히 계량경제학이나 소프트웨어 엔지니어링, 또는 정부기관 공식통계 부분에서 기존 예측방법 외에 선호되는 예측방법이다. 그 동안 상대오차를 이용한 예측법은 선형 혹은 비선형 회귀분석 뿐 아니라, 커널회귀를 이용한 비모수 회귀모형, 그리고 정상시계열분석에 이르기까지 그 범위가 확장되어 왔다. 그러나, 지금까지의 분석은 고정효과(fixed effect)만을 고려한 것이어서 임의효과(random effect)에 관한 상대오차 예측법에 대한 확장이 필요하였다. 본 논문의 목적은 상대오차예측법을 일반화선형혼합모형(GLMM)에 속한 감마회귀(gamma regression), 로그정규회귀(lognormal regression), 그리고 역가우스회귀(inverse gaussian regression)의 패널자료(panel data)에 적용시키는데 있다. 이를 위해 실제 자동차 보험회사의 손해액 자료를 사용하였고, 최량예측량과 최량상대오차예측량을 각각 적용-비교해 보았다.

두 시스템간의 편차 최소화를 적용한 상대적 동작제어 방법 (Relative Motion Control Methodology Using the Minimum Relative Error Between Two Systems)

  • 김성권
    • 제어로봇시스템학회논문지
    • /
    • 제9권12호
    • /
    • pp.994-1000
    • /
    • 2003
  • A new relative motion control methodology for a following system to an independent leading system is proposed for controlling relative position, velocity, and tension etc. It is based on maintaining minimum relative error between two independent systems. The control command of the following system to a leading system is generated by adding the current command and the output of the relative error compensation. The proposed control method is implemented on the experimental equipment which is a wire winding-unwinding system to control the tension of the line. The results show the unwinding system(follower) following the independent motion of the winding system(leader) to control the constant tension of the line in order to keep the roller dancer in reference position. The relative motion control method proposed in this paper can be applied to high precision equipment for unwinding and winding fine wire, fine fiber, and tape etc.

Vision-Based Relative State Estimation Using the Unscented Kalman Filter

  • Lee, Dae-Ro;Pernicka, Henry
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제12권1호
    • /
    • pp.24-36
    • /
    • 2011
  • A new approach for spacecraft absolute attitude estimation based on the unscented Kalman filter (UKF) is extended to relative attitude estimation and navigation. This approach for nonlinear systems has faster convergence than the approach based on the standard extended Kalman filter (EKF) even with inaccurate initial conditions in attitude estimation and navigation problems. The filter formulation employs measurements obtained from a vision sensor to provide multiple line(-) of(-) sight vectors from the spacecraft to another spacecraft. The line-of-sight measurements are coupled with gyro measurements and dynamic models in an UKF to determine relative attitude, position and gyro biases. A vector of generalized Rodrigues parameters is used to represent the local error-quaternion between two spacecraft. A multiplicative quaternion-error approach is derived from the local error-quaternion, which guarantees the maintenance of quaternion unit constraint in the filter. The scenario for bounded relative motion is selected to verify this extended application of the UKF. Simulation results show that the UKF is more robust than the EKF under realistic initial attitude and navigation error conditions.

계속조사에서 상대표준오차를 이용한 표본크기 결정에 관한 고찰 (A Note on the Decision of Sample Size by Relative Standard Error in Successive Occasions)

  • 한근식;이기성
    • 응용통계연구
    • /
    • 제28권3호
    • /
    • pp.477-483
    • /
    • 2015
  • 본 연구에서는 계속조사에서 과거의 조사결과에서 얻은 추정값의 상대표준오차를 이용한 표본크기 결정 문제에 대하여 실제 사업체 조사자료를 활용하여 살펴보았다. 통계청 사업체 조사결과 중 건설업을 모집단으로 이용하여 표본크기를 500에서 3,000까지 500씩 증가시켜가면서 표본을 1,000개씩 단순임의추출 또는 층화추출하여 추출된 각 표본으로부터 상대표준오차들의 사분위수를 계산하였다. 그리고 이들 값들을 토대로 계속조사에서 시점 (t-1)에서의 상대표준오차를 이용한 시점 t에서의 표본크기를 추출법에 따라 구하였다. 그 결과 단순임의추출의 경우는 층화추출의 경우보다 시점 (t-1)에서의 상대표준오차들의 크기에 따라 표본크기가 매우 크게 차이가 나타남을 알 수 있었으며, 층화추출의 경우도 어떻게 층화를 하느냐에 따라 표본크기에 차이가 있을 수 있음을 알 수 있었다. 따라서 계속 조사에서 과거의 조사결과에서 얻은 추정값의 상대표준오차를 이용한 표본크기 식을 활용하는데 있어서 세심한 주의가 필요함을 확인할 수 있었다.

Uncertainty Evaluation of a multi-axis Force/Moment Sensor

  • Kim, Gab-Soon
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제3권3호
    • /
    • pp.5-11
    • /
    • 2002
  • This paper describes the methods for calibration and evaluation of the relative expanded uncertainty of a multi-axis force/moment sensor. In order to use the sensor in the industry, it should be calibrated and its relative expanded uncertainty should be also evaluated. At present, the confidence of the sensor is shown with only interference error. However, it is not accurate, because the calibrated multi-axis force/moment sensor has an interference error as well as a reproducibility error of the sensor, etc. In this paper, the methods fur calibration and for evaluation of the relative expanded uncertainty of a multi-axis force/moment sensor are newly proposed. Also, a six-axis force/moment sensor is calibrated with the proposed calibration method and the relative expanded uncertainty is evaluated using the proposed uncertainty evaluation method and the calibration results. It is thought that the methods fur calibration and evaluation of the uncertainty can be usually used for calibration and evaluation of the uncertainty of the multi-axis force/moment sensor.

신경 회로망을 이용한 로봇의 상대 오차 보상 (Relative Error Compensation of Robot Using Neural Network)

  • 김연훈;정재원;김수현;곽윤근
    • 한국정밀공학회지
    • /
    • 제16권7호
    • /
    • pp.66-72
    • /
    • 1999
  • Robot calibration is very important to improve the accuracy of robot manipulators. However, the calibration procedure is very time consuming and laborious work for users. In this paper, we propose a method of relative error compensation to make the calibration procedure easier. The method is completed by a Pi-Sigma network architecture which has sufficient capability to approximate the relative relationship between the accuracy compensations and robot configurations while maintaining an efficient network learning ability. By experiment of 4-DOF SCARA robot, KIRO-3, it is shown that both the error of joint angles and the positioning error of end effector are drop to 15$\%$. These results are similar to those of other calibration methods, but the number of measurement is remarkably decreased by the suggested compensation method.

  • PDF

Hierarchical Bayes Estimators of the Error Variance in Two-Way ANOVA Models

  • Chang, In Hong;Kim, Byung Hwee
    • Communications for Statistical Applications and Methods
    • /
    • 제9권2호
    • /
    • pp.315-324
    • /
    • 2002
  • For estimating the error variance under the relative squared error loss in two-way analysis of variance models, we provide a class of hierarchical Bayes estimators and then derive a subclass of the hierarchical Bayes estimators, each member of which dominates the best multiple of the error sum of squares which is known to be minimax. We also identify a subclass of non-minimax hierarchical Bayes estimators.

INS/GPS Integrated Smoothing Algorithm for Synthetic Aperture Radar Motion Compensation Using an Extended Kalman Filter with a Position Damping Loop

  • Song, Jin Woo;Park, Chan Gook
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제18권1호
    • /
    • pp.118-128
    • /
    • 2017
  • In this study, we propose a real time inertial navigation system/global positioning system (INS/GPS) integrated smoothing algorithm based on an extended Kalman filter (EKF) and a position damping loop (PDL) for synthetic aperture radar (SAR). Integrated navigation algorithms usually induce discontinuities due to error correction update by the Kalman filter, which are as detrimental to the performance of SAR as the relative position error. The proposed smoothing algorithm suppresses these discontinuities and also reduces the relative position error in real time. An EKF estimates the navigation errors and sensor biases, and all the errors except for the position error are corrected directly and instantly. A PDL activated during SAR operation period imposes damping effects on the position error estimates, where the estimated position error is corrected smoothly and gradually, which contributes to the real time smoothing and small relative position errors. The residual errors are re-estimated by the EKF to maintain the estimation performance and the stability of the overall loop. The performance improvements were confirmed by Monte Carlo simulations. The simulation results showed that the discontinuities were reduced by 99.8% and the relative position error by 48% compared with a conventional EKF without a smoothing loop, thereby satisfying the basic performance requirements for SAR operation. The proposed algorithm may be applicable to low cost SAR systems which use a conventional INS/GPS without changing their hardware configurations.