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Hierarchical Bayes Estimators of the Error Variance in
Two-Way ANOVA Models?)
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Abstract

For estimating the error variance under the relative squared error loss in two-way
analysis of variance models, we provide a class of hierarchical Bayes estimators and
then derive a subclass of the hierarchical Bayes estimators, each member of which
dominates the best multiple of the error sum of squares which is known to be
minimax. We also identify a subclass of non-minimax hierarchical Bayes estimators.

Keywords : Balanced two-way ANOVA model, Error variance, Hierarchical Bayes estimation,
Minimaxity, Relative squared error loss.

1. Introduction
Consider the following two-way analysis of variance(ANOVA) models :
yau=0;tem, =1,2,-,p(>1);j=12,-,¢(>D), k=1,2,,n(>1),
where the ;s are independently and identically distributed(iid.) as N(0, ). Then the

minimal sufficient statistic for (6, ", 6, &) is (E:,---,};,S), where I=% glyijk

and S= 2 ﬁ;;’( y,»,-k—y_,-,;)z. Here we use the notations
i=1j=1k=

ytf_=y1f. y=(y119.“9yﬂq)T and oz(ello."’gm)T)

where “T” denotes the transpose. Then y and S are independent with

0,2

and
2
S~ Ozxm(n—l)v
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where [, is the pXg identity matrix.

Consider the problem of estimating for the error variance ¢ under the relative squared
error loss

L(d, &) = (80 2=1)" =0 "(6— ) (1.1)
The best affine equivariant estimator is &,(S)=(pg(%n—1)+2S)~! which is a minimax
estimator with constant risk 2(pg(n—1)+2) 7! Stein(1964) showed that &, can be improved
by considering” a class of scale equivariant estimators S(W.S)=¢é(W)S for
W=n yT(Ipq—X(XTX)*lXT)y/S, where X is a pgXk matrix with rank A(<{pg). He
found a specific better estimator & W.S) = ¢T(W) S,

where ¢ST(W) = min{ pq(n—11)+2 , pqn—-1k+2 (1+ W)}. Brewster and Zidek(1974) derived

an improved generalized Bayes estimator

8P W, S) = ¢"AW)S, (1.2)
where
1 ta=k_, _pan—tk
[T Ta+am T @
¢BZ(W)=M 1k+2 01 ba—k pan—#k
— - _ n— -2 .
” AT avam T Ta
T _ TyA—1yT
Though Stein’s estimator il improves on &, at 7= 70 (I X;‘:g X)) X6 =), it is

not an analytic function and hence is inadimissible. On the other hand, Brewster-Zidek's
estimator 6% does not improve on 8, at 7=0 though it is admissible as shown in
Proskin(1985). Therefore it is desirable to get better analytic estimators dominating &g,
especially at 7=0.

To do this, we consider the hierarchical Bayes estimation for ¢® under the loss(1.1). In

Section 2, we develop a class of hierarchical Bayes estimators of ¢*. In Section 3, we provide
a subclass, each member of which dominates 6, and also identify a subclass non-minimax

hierarchical Bayes estimators. All the results of this paper can be regarded as a two-way
extension of the results given by Datta and Ghosh(1995). In Section 4, we compare
numerically risks of the hierarchical Bayes estimators with risk of &, for some special cases.

2. Hierarchical Bayes Estimators

Consider the following hierarchical Bayesian model:
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(1) Conditionally on @, a=(ay,,a,)", ¢, and o>, y and S are mutually
independent with y ~ N,.( 6, %IM) and S~ Py ;

(II) Conditionally on @, ¢°, and o, 0~NM(X(1, ozllm), where X is a pgX £k matrix of

rank k(< pg);
a_—A_l _4=b )
(M (a,d® @~ 2 (PF+nd) 2, 0<alpgn—Fk+2, 0<b{pg—k+2.

Remark 2.1 Note that (I) and (II) represent a two-fold nested classification mixed effect
model if we let ;= u;+ y; where p;s are fixed, 7;'s are iid. as N0, %), and r;'s and
€;'s are independent. In this case, k=p, X=1,&® 1, and a=(#1,"',ﬂp)T. Also, (1)

and (II) represent a two-way crossed classification mixed effect model with intersections if

we let 0;=p;+B;+ 7; where pg;/s and B)'s are fixed with ]ZOB,:O, vi's are iid. as

MO0,d3), and 7;s and e's are independent. In this case, k=p+qg—1,

X=(,® 1,, 1,,®( 1‘11‘71 )), and a=(gy, ", #p, B1,"**, B4—1 ). Here, 1, denotes the
— 1 4

gX1 matrix with 1 as all elements and & the usual kronecker’s product.

a—

a—b _ _4-b
Remark 2.2 (I) is equivalent to say that m(@)ocl, n(d?, 0%) « (%) 2 1(o‘2+ nov) ¢,

and @ and (02 R J%) are independent. This prior for (0’2 , 0’%) contains Jeffreys’ noninformative prior
with @= b=2 as a special case and was first used in Portnoy(1971) with slightly different notations
who treated the problem of estimating o‘% under scale invariant loss in the one-way random effect
model y;=pu+e;+e;, i1=1,2,,p, j=1,2,,q where p is fixed, e,s are iid. as N(0,0'%),
e;'s are iid. as NQ0,¢%), and e's and e;'s are independent.

From (1) and (II), the conditional density of y, S, and @ given @, &, and & is

Ay,s 0l a,d, o)
= Ay,slo, a,,d*, &) x(0|a, &, & (2.1)

~HEG-0To- 0+ h(-Xa (0~ xa) | _mla=D _mla=D ;s

_ta _m &
« () (&) %e (%) s e .
Integrating out @ in (2.1) gives the conditional density of y and S given @, ¢*, and o‘%

Ry, sl a, &, )
pa(n—1) pa(n—1)

_ta -
= (Ptnd) B(A T E o5

1 n _(wTs Iy T T T (T T n Tir o Ty -1y T s
2[‘,,erﬁ(a (X7X) 'XTy)(XTX)a— (XTX) 'XTy)+ dzﬂozly(l,, XXX X Ny+ 7]
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Then the posterior density of a, & , and 021 is given by

m(a,d, dly,s)

< f(y,sla d, o) nla, d, o)
_ba—b+4 _pan—~D—~a+b+2

o« (+ nod) 2 () 2

_1 n —(vT Vy T NTf T (T 1y T n T _ Ty =iy T s
2[02+n02|(a (XX X" U(XTX)Na—(XTX) X+ OJMO%y(]M X(XTX) ‘X)y+02]

(2.2)
Next, integrating with respect to @ in (2.2), it follows that the posterior density of & and of
is

a(d, o ly, s

pa—k—b pa(n—1)~a+b+2 — - ™X) 'XMyy— =25
+4 _ nlzﬂ . 2(02+02)y(1 X(X'X) 'Xy 202

<(F+nd) : (P (2.3)

1 Pk

Now we use the transformation 7= >l and A= m Then, from (2.3), we get the po-

sterior density of » and A given by

pan—k—a pg—k—b r T, Ty -1
~ Ly, — X(XTX) ' Xy y+9)
w(r,Aly,s) < » 2 A % g ? " . (2.4)

From (2.4) we have
L= 2y L= X(XTX0 Xy +9)

(A, y,s) < » * e
and '
pg—k—b
mAly,s) < A 2 .
_pan—k—o+
Ay (L, — X(X"X) "' XT) y+ 5] 2

Theorem 2.1 Under the loss (1.1) the hierarchical Bayes estimator of F= 7 is given by

M3, 8) = ¢B(W, S) = af’%(WS) (2.5)
_pan—k—a _
. fa T e T
where pai(w )__pqn b—atd pa—k=b “mm—k=a_,

f/l 2 (1+Aw) 2 dA

_ L= X(X"XT)T'X )y
. :

with

Proof. Under the loss (1.1) the posterior risk of an estimator &(y) of = 1 is given by

Ho & y,9—02y,s] = E[rz(a(y,s)——lr> | y, S]

_E(d y,s) _ _LE(A v.9)1*
E(rzly,S)[a(y,s) By, ] 1 S
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Hence the posterior risk is minimized when

_ oHB _ _E(rly,s) _ E(E(#IA, v.9)| y.s}
My,8)=08,Ky,9= Bl lys) ~ EECA 3.9 98" (2.6)

Now,

E(r1A, y,5) = (pgn—k—a+2D[ndy"(L,— X(X"X) ' XD y+s] (2.7
and

E(Z A, 9,9)= (pan—k—a+4)(pan—k—a+ 2 nAyT(L,,— X(X"X) ' XN y+s] 72, (2.8)
From (2.6), (2.7) and (2.8), we get

E(rlv.s) _ 1 B[ (ndy"(,— X(X"X) ' XD y+9) ~ly,s]
E(#1y,s) pan—k—at4 E (ndy"(I,,— X(X"X) ' XD y+s) %1y,
1 ba—k—b _mn—k—a__z
S ) A 2 (14 Aw) 2 di
—k—a+4 | La—k—b _bgn—k—a _ .
oA T v T T

It is noted that 645 coincides with Brewster-Zidek’s estimator 6% in (1.2).

3. Minimaxity and Non—minimaxity

Making a transformation libflw =z, ¢Z}‘Z(w) in (2.5) becomes

114

T+w pa—k=b _pan—D—ath
f z ¢ (1-2 2 dz
@ P(In—k—a+4 ITWW pa—k—b _pen=D—at+tb+2
. z ¢ (1-2 2 dz
Next ¢f_’?,( w) in (3.1) is represented through the hypergeometric function
_ & (e)i(ep)r & _
F(cp cpe3x)=1+ ;1 (e, 1 for (¢);=clc+1)(c+1-1).
The following facts about F(c;, ¢y, ¢3, %), from Abramobitz and Stegun(1964), are need;
fo £ —1(1— 0 ldt= tl F(ci,1= ¢, ¢+ 1,%) for ¢, c01, (3.2)
F(c), ¢y, c3,2)=(1—%) """ *F(c3— c1, c5— ¢3, €3, %), (3.3)
(c3—c1—¢y) Fley, ¢y c3,x)—(c3—c)F(c;—1, ¢, ¢3,%)
+ (1= x)F(cy, cy+1, ¢3,%) =0, (3.4)

(cy— ) )X(1—x) Flcy, ¢y, c3,x%) —(c3— ¢ )F(c,— 1, ¢y, ¢3, %)
+(cy— c)F(c;, co—1,¢3,%x) =0, (3.5)
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F(c, ¢y, ¢c3,1)=o0 when c¢3—c¢;— < —1. (3.6)
Using (3.2) and (3.3), (3.1) becomes
T¥w ba—k—b _ paln—1)—ath
fo z % (1-2) R
Ttw ba—k—b _ sen—=1—a+b+2
fo z 2 (1-2 2 dz
pgn—k—a+4 pg—k—b+4 w
F(1 pan—Fk—a+6 _pg—k—>b+4 w
’ 2 ’ 2 14w

Moreover by (3.4) and (3.5), ¢fﬁ,( w) is expressed as

HB _ 1
Pa.(w) = pa(n—1)—a+b+2 X
(1- Spa—koblz ). 3.1
(pa(n—1)—a+b+2) F(1, f"”’“z”““ Pk +4 TU) + (g~ k= b+2)

Considering the case of a= b and making use of (3.7), we prove the following theorem :

Theorem 3.1 The estimator 62{3 with 2<alpg—k+2 is a minimax estimator of ¢ under
the loss (1.1).
Proof. We verify that ¢ha(w) with 2<a<pg— k+2 satisfies the condition for minimaxity

proposed by Brewster and Zidek(1974) : ¢Z€,( w) is nondecreasing in w for 2<a<{pg—k+2
and ¢%(w)= ¢£’§(w)s¢ﬁi(w)sml—l—)+—2 for all w and 2<a<{pg— k+2. Now,

HB _ 1
a0 (W)= pa(n—1)+2 %

(ba(n—D+2) (1, 2an=katd pa—hkoatd _w_yy(ppqrg)’

. pagn—k—a+4 pg—k—at4 w
Since F(1, 9 . 9 T+ w

) is increasing in w for 2<a{pg— k+2,

HB L L .
$o..(w) is increasing in w. And since

pa—k—a+4  pgn—rk—a+4 == pa(n—1)+2 <—1
2 2 2 ’

it is clear from (3.6) that lim ¢Z€,( w) = Also, for 2<a<lpg— k+2, ¢ZIZ( w) is
w00

1 ,
pa(n—1)+2"
increasing in @ since

F(1 pgn—k—a+4 _pg—k—a+4 w
’ 2 ’ 2 1t w
pan—k—a+4( Wy, (pan—k—a+4)(bqn—k——a+6)( w
pq—k—(a+4) 1+w (pa—k—a-ii4)(pc$—k—a+6() 11)+w
— pg(n—1 w pa(n—1 pag(n— w
O+ T e T+ ) T Ot e a Y =2 6 N T+ w

= 1+ )2_|_...

)2+...
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is increasing in a. Hence &.5= quf,( W)S is minimax for 2<a<{pg—k+2.

Theorem 3.2 The estimator 875 with 0<a<2 is not minimax.
Proof. Without loss of generality we assume =1 Let U=mn yT(IM— X(XTx)"'xDy.

07T(1,— Xx(X"Xx)"'Xx"
Then U~xiq_k(77) with 7= 70 (L (2 X) >0. When 7=0, U~x?,q_k with

pdf. fr-i(A), and cdf. Fy_ (), u>0. Let W=% and V= S~x§,q(,,_1). Then U= WV

and S=V. Also U and S are independent. Then the joint p.d.f. f(#,s) of U and S is
given by

R, ) = Fog— i) Foqn-1)(8).
And the joint pdf g(w,v) of W and V is gw,v)=fy—(w0)fyn-1)(v) - v. Now by
using Kubokawa’s(1994) method we first investigate the nature of the risks of 853 and §; at

7=0. The risk of 8, , at =0 is written as

RO,575) = [ [ (S 0)r— 1) tfy- K 00) Frta- () i

Since lim ¢Z€l(w) = the risk of &; at »=0 is given by
w—oo

RO D2
RO.8) = | w(mu—nzm_n(w do

= [f (355 (W)= 1)*fratn-1(0) Fpg—wtd dv 1ymg

= fo —{f [¢ZI,B;(W)U_1]2fm(n—1)(U)qu_k(wv)dv}dw

= f f dw {(BZB () v— 1) sqn-1)(0) Fpg— e w) } dvdw

=f f{2(¢fi(w)v 1X(v d¢>“(w) 28 ) Foatn— 1 0) F g k(wv)}dvdw

+f f (¢a (W)U 1) fm(n 1)(U)prq k(wv)dva’w

Therefore the risk difference &, and &8, , at =0 is written as

R(0, 8) — R(0, 88) = 2 f f (v d¢“ “(“’) YA (1) 0= 1)fpsim—1y( 0) F o i w0) dodu
= 2f f°°( d¢a a(W) )qulZ(w)vsz(n (V) F py— L wv) dvdw

_wa d¢ (W) {fo Ufm(n—l)(v)qu_k(wv)dv}dw.
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S0 Frtne () Fpo— i)
f 2 Frain () Fpo i wt) dv
R0, &)— R(0, 87
= 2Dy ym iy g7  Fur() Frg- 100 o

We see that Brewster Zidek's estimator 6"H( W, S) = 6 2(W.S)= f 2(W)S does not improve

Since ¢25(w)=

on the best equivariant estimator 80=m_1T+2-S at 7=0. See also Rukhin(1992). On

the other hand, since ¢a B(w) is strictly increasing in a, 8a . With 2<a<{pqg— k+2 improves
on d&j, especially at p=0. 8,, 2 with 0<a{2 does not improve on &, at 7=0, ie
R(0,80) — R(0, 8, 2,)<0 for 0<a<2 which implies that 8a 2 with 0<a<{2 is not minimax.

Remark 3.1 Maruyama(1998) proposed the minimax generalized Bayes estimator
MW, S)=¢M(W)S with a>1, where

1 elpg—h) Z_k -1 —a[-m—z_k+1]
M( ) 1 0/1 (1+ Aw) dA
b (w)= —k n—k ,
—k+2 1 @ - —af BB=E
par ST Tt T T g

Cleary é‘M coincides with 6% = ;ﬁ{ 5. He showed that 8¥ with @>1 improves on 0y at

7=0. 8" with @)1 differs from éfa with 2(0(1)4 k42

Remark 3.2 Following Kim, Chang, and Choi(2001), we may verify the admissibility of 82’5
with 0<a<{pg— k+2. But this will not be given here.

4. Numerical Comparison of Risks

In this section, we compare numerically the risks of best equivariant estimator 8y and

8% with 0<a<pg— k+2.

First note that the risk of &, is R(02,80)= Next following Datta and

2
pa(n—1)+2 -

Ghosh(1995), we can get, after lengthy calculations, an exact expression for the risk difference

of &y and 65% under the loss (1.1) as follows:

R(, 8)) — R(*, 835) = E[ (pan— k+2L)(pgn— k+2L+2) A 1 ], (4.1)
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B (1=V)¢g (V)
where ALe = E[ (pg{n—1)+2)(pgn—k—a+4) X
~ 2 I
(2L+a 2)( pan—k+2L+2  pg(n—1)+2 )IL]
Qg—zk-b j_a_(n_—zl)iz
. _ 2 v (1-W
with %(V)— pan—k—a+4 v _M:,Z&:_g 429_(11_51&2_
foz (1-2) dz
T, _ Ty —13T
and VZITWW for W= ny Uy X(SX X) X )y. Here L~ Poisson(n) with
I Ty —15-T
_ n0 (I X;ig 2P SO’ VL ~Beta ( pq—l§+2L’ pa(f?z—l) ). The details

for deriving (4.1) will not given here.
Based on (4.1) Figure 1 gives a numerical comparison of the risks of &, and Sff, with

a=1,2,3,4,5 for p=4, ¢g=3, n=2 when we take X=(I,Q1,, 1,® ([,-, —1,-1)7).

\ Ususl Minimax

0.1428

0.1428

0.1424

0.1422

5 =B, a=1) n 15 20

0.1418

Figure 1. Comparison of risks of &§; and 85’5, with ¢=1,2,3,4,5
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In this case, k=p+g—1=6, W=2,§:[,g(y’7_7i~_—;-—f+y—“)2/s and
7= 2.12:‘(9;5—?:—744-7“)2 /&*, where I=% gly’j’ 7}:% Zlyij'

y—..zﬁ 21 glyi;, 0_,=*31— Zlﬁﬁ, 6’_,=i° ﬁleij, and‘~¢9—_—.=1L2 gl ileij. As found in

1= L J=

(4.1), the risk difference depends only on 7. Hence the plot uses #» in the horizontal axis.

As proved in Theorem 3.2, 8{{? is not minimax, i.e., it is possible to have negative risk
improvement over &y (since a { 2). However, in spite of 6{{?, it can perform much better than

the minimax estimators( a=2,3,4,5) for a wide range of values of #. Also Figure 1

HB aBZ

confirms the fact that 83 2= does not improve on &8; at 7=0. Finally, when 7 goes to

infinity, all the hierarchical Bayes estimators seem to be very close.
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