• Title/Summary/Keyword: relative assessment

Search Result 1,049, Processing Time 0.032 seconds

Climate Data Qualification for Water Quality Impact Assessment (수질영향평가의 신뢰수준 향상을 위한 기상자료의 검정)

  • Lee, Khil-Ha;Cho, Hongyeon
    • Journal of Environmental Impact Assessment
    • /
    • v.20 no.5
    • /
    • pp.601-613
    • /
    • 2011
  • This study is focused on a climate data integrity to improve water quality assessment due to the social development projects. The study is in an attempt to calculate both extreme ranges of weather data measurements and partly provide means to assess qualification of data which fall within the extremes at the 23 meteorological weather stations. Generally speaking, maximum temperature, minimum temperature, relative humidity, dew point temperature are in the range of reasonable accuracy. However, there found some outliers of the brightness sunshine hours in Cheonan station. Also some years in Gwangju, Seoul, Wonju, Busan, and Jeju never reach to their upper limit and perhaps the calibration of the equipment is doubtful. The users need to take cautions in using the brightness sunshine hour data in preparation of water resources planning and management by estimating evapotranspiration and river discharge, and/or growth rate of the algae (phytoplankton).

Research on the Structure and Application of Fuzzy Environmental Impact Assessment Model

  • Tien, Shiaw-Wen;Hsneh, Chia-Hsiang;Chung, Yi-Chan;Tsai, Chih-Hung;Yu, Yih-Huei
    • International Journal of Quality Innovation
    • /
    • v.5 no.2
    • /
    • pp.45-62
    • /
    • 2004
  • Any business activities may have impact on environment to a certain extent. Enterprises must find appropriate approaches to measure the impact on these environmental aspects, which can be used as the basis to direct enterprises' efforts to improve the environmental impact. The method used to evaluate significant factors in life cycle assessment standards is the one most commonly used by enterprises in general to measure environmental impact. By this method, the decisive factors of each environmental aspect are given scores according to the preset scoring standard of the organization. The scores are added up for each aspect and ranked to assess major environmental aspects. The drawback of this assessment method, that is, it ignores the degree to which each of these factors affects the environment, results in poor credibility. Therefore, this study attempts to solve some qualitative problems by applying to fuzzy theory, in particular, by identifying appropriate fuzzy numbers through fuzzy sets and membership function. Moreover, the study seeks to obtain a crisp value in the process of defuzzifization in order to make up for the shortfall of the original method in dealing with relative weight of decisive factors and thus increase its applicability and credibility. The department of light production of an electronics company is used as an example in this study to measure environmental aspects by employing both the traditional significant factor method and the fuzzy environmental impact assessment model proposed in this study. Based on verification and comparison of results, the model proposed in this study is more feasible as it reduces partiality in decision-making by taking the relative weights of decisive factors into consideration.

ON CRACK INTERACTION EFFECTS OF IN-PLANE SURFACE CRACKS USING ELASTIC AND ELASTIC-PLASTIC FINITE ELEMENT ANALYSES

  • Kim, Jong-Min;Huh, Nam-Su
    • Nuclear Engineering and Technology
    • /
    • v.42 no.6
    • /
    • pp.680-689
    • /
    • 2010
  • The crack-tip stress fields and fracture mechanics assessment parameters for a surface crack, such as the elastic stress intensity factor or the elastic-plastic J-integral, can be affected significantly by the adjacent cracks. Such a crack interaction effect due to multiple cracks can alter the fracture mechanics assessment parameters significantly. There are many factors to be considered, for instance the relative distance between adjacent cracks, the crack shape, and the loading condition, to quantify the crack interaction effect on the fracture mechanics assessment parameters. Thus, the current assessment codes on crack interaction effects (crack combination rules), including ASME Sec. XI, BS7910, British Energy R6 and API 579-1/ASME FFS-1, provide different rules for combining multiple surface cracks into a single surface crack. The present paper investigates crack interaction effects by evaluating the elastic stress intensity factor and the elastic-plastic J-integral of adjacent in-plane surface cracks in a plate through detailed 3-dimensional elastic and elastic-plastic finite element analyses. The effects on the fracture mechanics assessment parameters of the geometric parameters, the relative distance between two cracks, and the crack shape are investigated systematically. As for the loading condition, an axial tension is considered. Based on the finite element results, the acceptability of the crack combination rules provided in the existing guidance was investigated, and the relevant recommendations on a crack interaction for in-plane surface cracks are discussed. The present results can be used to develop more concrete guidance on crack interaction effects for crack shape characterization to evaluate the integrity of defective components.

Derivation of Indicators for Value Assessment of School Gardens

  • Hong, In-Kyoung;Yun, Hyung-Kwon;Jung, Young-Bin;Lee, Sang-Mi
    • Journal of People, Plants, and Environment
    • /
    • v.23 no.4
    • /
    • pp.433-443
    • /
    • 2020
  • Background and objective: The boom in urban agriculture has also resulted in the creation of many school gardens. With the increase in various hands-on education programs, people are interested in assessing the value of school gardens. This study was conducted to derive indicators for service value assessement of educational farming experience using school gardens. Methods: Through literature review, we selected assessment items and sub-factors. The indicators for evaluating the effectiveness of school gardens are classified using the Delphi method that involve a focus group experts. In order to increase the reliability and validity of the selected and classified items, an exploratory factor analysis was conducted. In addition, the relative importance and priority of each factor in each field were assessed using the analytic hierarchy process (AHP). Results: We classified the indicators into 4 criteria and come up with 13 items and 33 sub-factors in educational value, health value, economic value, and ecological and environmental value. Most of the items for the 4 value criteria derived were significant for assessing the value of agricultural experience services with content validity ratio (CVR) higher than 0.59 and reliability higher than .6 . In the value criteria, the experts rated educational value as the most important, followed by health value, ecological and environmental value, and economic value. In the assessment items, the most important was improvement of social functions. In the sub-factors, the most important was strengthening of ties (friendly interactions). Conclusion: Among the derived indicators assessing the value of school gardens, 4 criteria, 12 evaluation items and 29 sub-factors showed significance. The schematic index would be useful for the assessment.

Numerical Study on Improvement of Storage Environment of Igloo-Shaped Magazine Using Forced Ventilation (강제환기를 적용한 이글루형 탄약고 저장환경 개선에 관한 수치적 연구)

  • Yoon, Hae-Deun;Kim, Seong Hoon
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.24 no.1
    • /
    • pp.99-106
    • /
    • 2021
  • This study explores the improvement of storage environment of igloo-shaped magazine using forced ventilation. Conjugate heat transfer analysis of forced convection and conduction are performed to calculate the flow, temperature, and relative humidity field in igloo-shaped magazine. Through the conjugate heat transfer analysis, the effects of inlet vent, volume flow rates of jet, and jet angles on the condensation and relative humidity are numerically investigated. The area of condensation in igloo-shaped magazine and relative humidity at the surface of ammunitions are then calculated.

The Assessment of Survey on the Indoor Air Quality at Schools in Korea (국내 일부학교 건축물의 실내공기질 평가)

  • Sohn Jong-Ryeul;Roh Young-Man;Son Bu-Soon
    • Journal of Environmental Health Sciences
    • /
    • v.32 no.2 s.89
    • /
    • pp.140-148
    • /
    • 2006
  • Recently, indoor air quality (IAQ) in workplace, residential environments and schools has been concerned of people, scientists and related the public, and has recognized the health effects related to indoor air pollution. Therefore, this study was performed to investigate the characteristics of IAQ in 55 kindergartens, elementary school, middle schools, and high schools from June, 2004 to May, 2005 in Korea. We measured indoor air pollutants($PM_{10},\;CO_2$, HCHO, total bacteria colony(TBC), CO, radon, TVOCs, asbestos, and $O_3$), and physical factors(noise, temperature, relative humidity, and illumination) with necessary of management for IAQ in school. We classified into 5 kinds of the school by period since building completion, <1 year, 1-3 years, 3-5 years, and 5-10 years. The concentration of pollutants and the level of physical factors compared with standards and guidelines of IAQ on the Ministry of Environment, the Ministry of Health and Welfare, and the Ministry of Education and Human Resources Development. The major results obtained from this study were as follows. Temperature, relative humidity and illumination among the physical factors did not exceed the standards, but noise exceeded it. Asbestos and $O_3$ did not detect in surveyed classrooms. CO, TBC, TVOCs, and HCHO in kindergartens, TBC in elementary schools, TBC, TVOCs dnd HCHO in middle schools, and HCHO in high schools detected the standards. This study is conducted as a part of efforts to provide a foundational data for further relative researches on management of IAQ of school. Therefore, we suggest that country plan for management of IAQ in school should be established through long-term and continuous investigation for assessment on IAQ in school and health risk assessment for students.

Accelerated Monte Carlo analysis of flow-based system reliability through artificial neural network-based surrogate models

  • Yoon, Sungsik;Lee, Young-Joo;Jung, Hyung-Jo
    • Smart Structures and Systems
    • /
    • v.26 no.2
    • /
    • pp.175-184
    • /
    • 2020
  • Conventional Monte Carlo simulation-based methods for seismic risk assessment of water networks often require excessive computational time costs due to the hydraulic analysis. In this study, an Artificial Neural Network-based surrogate model was proposed to efficiently evaluate the flow-based system reliability of water distribution networks. The surrogate model was constructed with appropriate training parameters through trial-and-error procedures. Furthermore, a deep neural network with hidden layers and neurons was composed for the high-dimensional network. For network training, the input of the neural network was defined as the damage states of the k-dimensional network facilities, and the output was defined as the network system performance. To generate training data, random sampling was performed between earthquake magnitudes of 5.0 and 7.5, and hydraulic analyses were conducted to evaluate network performance. For a hydraulic simulation, EPANET-based MATLAB code was developed, and a pressure-driven analysis approach was adopted to represent an unsteady-state network. To demonstrate the constructed surrogate model, the actual water distribution network of A-city, South Korea, was adopted, and the network map was reconstructed from the geographic information system data. The surrogate model was able to predict network performance within a 3% relative error at trained epicenters in drastically reduced time. In addition, the accuracy of the surrogate model was estimated to within 3% relative error (5% for network performance lower than 0.2) at different epicenters to verify the robustness of the epicenter location. Therefore, it is concluded that ANN-based surrogate model can be utilized as an alternative model for efficient seismic risk assessment to within 5% of relative error.

Experimental Analysis of Liquefaction Resistance Characteristics of Silica Sand Used in Earthquake Simulation Tests (국내 지진 모의시험에 이용되는 규사의 액상화 저항특성에 관한 실험적 분석)

  • Choi, Jaesoon;Jin, Yunhong;Baek, Woohyun
    • Journal of the Korean GEO-environmental Society
    • /
    • v.23 no.5
    • /
    • pp.5-13
    • /
    • 2022
  • In this study, dynamic characteristics and liquefaction resistance characteristics of silica sand which is used to simulate sandy layer were conducted using the cyclic triaxial test according to the relative density difference. The difference in liquefaction resistance with the relative density was confirmed through the test results, which the relative density conditions were changed to 40%, 60%, and 80%, and the cyclic resistance ratio (CRR) curve of the silica sand was obtained. In addition, in order to examine the validity of the liquefaction resistance ratio (CRR) curve, artificial silica sand ground was created, and liquefaction potential was evaluated through the simple assessment method and the detailed assessment method, and the safety factors of each were compared.

Body mass index and relative handgrip strength are associated with the prevalence of hypertension in Korean elderly: Korean national fitness assessment in 2019

  • Kim, Ji Young;Park, Hun-Young;Kim, Jisu;Lim, Kiwon
    • Korean Journal of Exercise Nutrition
    • /
    • v.25 no.2
    • /
    • pp.26-32
    • /
    • 2021
  • [Purpose] This study aimed to analyze the prevalence of hypertension according to the body mass index (BMI) and relative handgrip strength (RHGS) among elderly individuals in Korea. [Methods] We analyzed the data of 44,183 Korean elderly individuals over 65 years old (men: n = 15,798, age = 73.31 ± 5.04 years, women: n = 28,385, age = 72.14 ± 5.04 years) obtained from the Korean National Fitness Assessment in 2019. All the participants were categorized into three groups according to the BMI and RHGS; additionally, one-way ANOVA and logistic regression analysis were performed. [Results] Overweight (men: 1.16 odds ratio [OR] 1.06-1.26, 95% confidence interval [CI]; women: 1.15 OR, 1.07-1.23 95% CI) and obese (men: 1.54 OR, 1.42-1.66 95% CI; women: 1.44 OR, 1.36-1.53 95% CI) elderly individuals showed a higher prevalence of hypertension than elderly individuals with normal weight, after controlling for age. In men, a lower RHGS was associated with a higher prevalence of hypertension after controlling for age (weak RHGS: 1.09 OR, 1.00-1.17 95% CI; middle RHGS: 1.21 OR, 1.12-1.31 95% CI vs. strong RHGS). [Conclusion] A higher BMI was associated with the prevalence of hypertension in the elderly Korean population. In addition, a lower RHGS was associated with the prevalence of hypertension in elderly Korean men.

Application of PIV to Fluid-Machinery Studies (유체기계연구에서의 PIV의 적용)

  • Lee, Y. H.
    • 유체기계공업학회:학술대회논문집
    • /
    • 1997.02a
    • /
    • pp.188-195
    • /
    • 1997
  • The application of PIV to the studies of fluid-machines, especially focused on turbo-machinery is reviewed by scrutinizing the previous investigation. Owing to the inevitable high-speed analysis of turbo-machinery consisting of rotating impellers, the importance of optical setups to cope with illumination problem is frequently mentioned as main ingredient affecting the PIV performance. And the acquisition of the relative velocity and absolute velocity is determined mainly by the optical recording conditions. A few studies cast satisfactory extension of the PIV data to quantitative pressure estimation and related noise assessment.

  • PDF