• Title/Summary/Keyword: relative adsorption

Search Result 202, Processing Time 0.031 seconds

Study of Effect of Lateral Intermolecular Interaction on Multilayer Physical Adsorption of Gas

  • Han, Sang-Hwa;Lee, Jo W.;Pak, Hyung-Suk;Chang, Sei-Hun
    • Bulletin of the Korean Chemical Society
    • /
    • v.1 no.4
    • /
    • pp.117-121
    • /
    • 1980
  • The effect of lateral intermolecular interactions among the adsorbate molecules has been incorporated into the theory of multilayer physical adsorption developed previously by the present authors within the frame of Bragg-Williams approximation and the resulting adsorption isotherm has been used to interpret the adsorption data of tetramethylsilane vapor on clean iron film which we failed to account for in our previous works. The result has shown that up to the point where the relative pressure is about 0.7 considerable improvement is obtained but beyond this point there still remains large difference between theoretical and experimental isotherm. Such difference is supposed to arise from the neglect of effect of vertical interaction between the adsorbate molecules and the adsorbent surface.

Adsorption Behaviors of Metal Elements onto Illite and Halloysite (일라이트, 할로이사이트에 대한 중금속 원소의 흡착특성)

  • 추창오;김수진;정찬호;김천수
    • Journal of the Mineralogical Society of Korea
    • /
    • v.11 no.1
    • /
    • pp.20-31
    • /
    • 1998
  • Adsorption of metal elements onto illite and halloysite was investigated at $25^{\circ}C$ using pollutant water collected from the gold-bearing metal mine. Incipient solution of pH 3.19 was reacted with clay minerals as a function of time: 10 minute, 30 minute, 1 hour, 12 hour, 24 hour, 1 day, 2 day, 1 week, and 2 week. Twenty-seven cations and six anions from solutions were analyzed by AAs (atomic absorption spectrometer), ICP(induced-coupled plasma), and IC (ion chromatography). Speciation and saturation index of solutions were calculated by WATEQ4F and MINTEQA2 codes, indicating that most of metal ions exist as free ions and that there is little difference in chemical species and relative abundances between initial solution and reacted solutions. The adsorption results showed that the adsorption extent of elements varies depending on mineral types and reaction time. As for illite, adsorption after 1 hour-reaction occurs in the order of As>Pb>Ge>Li>Co, Pb, Cr, Ba>Cs for trace elements and Fe>K>Na>Mn>Al>Ca>Si for major elements, respectively. As for halloysite, adsorption after 1 hour-reaction occurs in the order of Cu>Pb>Li>Ge>Cr>Zn>As>Ba>Ti>Cd>Co for trace elements and Fe>K>Mn>Ca>Al>Na>Si for major elements, respectively. After 2 week-reaction, the adsorption occurs in the order of Cu>As>Zn>Li>Ge>Co>Ti>Ba>Ni>Pb>Cr>Cd>Se for trace elements and Fe>K>Mn>Al, Mg>Ca>Na, Si for major elements, respectively. No significant adsorption as well as selectivity was found for anions. Although halloysite has a 1:1 layer structure, its capacity of adsorption is greater than that of illite with 2:1 structure, probably due to its peculiar mineralogical characteristics. According to FTIR (Fourier transform infrared spectroscopy) results, there was no shift in the OH-stretching bond for illite, but the ν1 bond at 3695 cm-1 for halloysite was found to be stronger. In the viewpoint of adsorption, illite is characterized by an inner-sphere complex, whereas halloysite by an outer-sphere complex, respectively. Initial ion activity and dissociation constant of metal elements are regarded as the main factors that control the adsorption behaviors in a natural system containing multicomponents at the acidic condition.

  • PDF

Selective Removal of Al(III) from Rare Earth Solutions Using Peas-based Activated Carbon

  • An, Fu-Qiang;Wu, Rui-Yan;Li, Min;Yuan, Zhi-Guo;Hu, Tuo-Ping;Gao, Jian-Feng
    • Journal of the Korean Chemical Society
    • /
    • v.61 no.5
    • /
    • pp.231-237
    • /
    • 2017
  • Efficiently removing Al(III) from rare earth is very significant because even trace amount of Al(III) can cause serious harm to the rare earth materials. In this paper, a nitrogen-containing activated carbon, AC-P700, was synthesized using peas as raw materials. The AC-P700 was characterized by surface area analyzer, FT-IR, and XPS methods. The adsorption and recognition properties of AC-P700 towards Al(III) were investigated, and the recognition mechanism was also analyzed. The BET special surface area of AC-P700 was $1277.1m^2{\cdot}g^{-1}$, and the average pore diameter was 1.90 nm. The AC-P700 possesses strong adsorption affinity and excellent recognition selectivity towards Al(III). The adsorption capacity for Al(III) could reach to $0.53mmol{\cdot}g^{-1}$, and relative selectivity coefficients relative to La(III) and Ce(III) is 9.6 and 8.7, respectively. Besides, AC-P700 possesses better regeneration ability and reusability.

Modeling of Co(II) adsorption by artificial bee colony and genetic algorithm

  • Ozturk, Nurcan;Senturk, Hasan Basri;Gundogdu, Ali;Duran, Celal
    • Membrane and Water Treatment
    • /
    • v.9 no.5
    • /
    • pp.363-371
    • /
    • 2018
  • In this work, it was investigated the usability of artificial bee colony (ABC) and genetic algorithm (GA) in modeling adsorption of Co(II) onto drinking water treatment sludge (DWTS). DWTS, obtained as inevitable byproduct at the end of drinking water treatment stages, was used as an adsorbent without any physical or chemical pre-treatment in the adsorption experiments. Firstly, DWTS was characterized employing various analytical procedures such as elemental, FT-IR, SEM-EDS, XRD, XRF and TGA/DTA analysis. Then, adsorption experiments were carried out in a batch system and DWTS's Co(II) removal potential was modelled via ABC and GA methods considering the effects of certain experimental parameters (initial pH, contact time, initial Co(II) concentration, DWTS dosage) called as the input parameters. The accuracy of ABC and GA method was determined and these methods were applied to four different functions: quadratic, exponential, linear and power. Some statistical indices (sum square error, root mean square error, mean absolute error, average relative error, and determination coefficient) were used to evaluate the performance of these models. The ABC and GA method with quadratic forms obtained better prediction. As a result, it was shown ABC and GA can be used optimization of the regression function coefficients in modeling adsorption experiments.

Removal of Sulfur Compounds from Anaerobic Digestion Gas (혐기성 소화 가스로부터 황화합물의 제거)

  • Choi, Do-Young;Jang, Seong-Cheol;Ahn, Byoung-Sung;Choi, Dae-Ki
    • Applied Chemistry for Engineering
    • /
    • v.19 no.1
    • /
    • pp.31-36
    • /
    • 2008
  • In hydrogen production for fuel cell by reforming ADG, sulfur compounds, odorant in ADG, are detrimental to reforming catalyst and fuel cell electrodes. We prepared alkali metal impregnated activated carbon to remove sulfur compounds in ADG by adsorption. The sulfur breakthrough adsorption capacity was changed depending on the oxygen concentration and relative humidity. Oxygen 0.2 vol% and RH 90% showed the highest sulfur breakthrough capacity. Adsorption characteristics of $H_2S$ on KI impregnated activated carbon were evaluated using dynamic adsorption method in a fixed bed. Based on the results, adsorption tower was designed and field-tested.

Adsorption Equilibrium of Rhodamine 6G onto the Conchiolin Layer from Aqueous Solution (수용액중의 Rhodamine 6G 염료의 콘키오린 층에 대한 흡착평형)

  • Shin Choon-Hwan;Song Dong-lk
    • Journal of Environmental Science International
    • /
    • v.14 no.12
    • /
    • pp.1195-1201
    • /
    • 2005
  • In order to develop a dye coloring technology on Conchiolin layer in cultured pearls, appropriate dyes were selected, their solubilities in various solvents were studied, and adsorption and desorption experiments were performed. Solubilities of several basic dyes known to suitable for the pearl coloring, i.e., Rhodamine 6G(R6), Rhodamine B(RB) and Methylene Blue(MB), in several solvents (distilled water, methanol, ethanol, and acetone) were investigated. Among these dyes, R6 was chosen as a dye for single component adsorption and desorption experiment due to the relatively good solubility in various solvents tested. Solubilities of dyes were judged to be enough to color the pearls since dye concentrations in pearl coloring are, in general, not so high. The internal surface area of the pearl layer is believed to be directly related to the dye adsorption, the single-point internal surface area of the pearl layer measured at the nitrogen relative pressure of 0.3 was found to be $0.913m^2/g$, and the BET internal surface area, $1.01m^2/g$ The most probable diameters of micropores and macropores were found to be $40{\AA}$and $5000{\AA}$ respectively, from the pore size distribution data. Adsorption isotherm was well fitted to the Langmuir isotherm model, resulting in q=$\frac{1.62C}{1+1.09C^{.}}$

Polymer Adsorption and fiber Dispersion Stability of a Paper Stock Colloidal Suspension with a PAC-PAE Dual Polymer System (PAC-PAE 2중 고분자 내첨 지료의 고분자 흡착 및 교질 분산계의 안정성 연구)

  • 윤성훈;김태영;김덕기;송병규
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.35 no.2
    • /
    • pp.18-25
    • /
    • 2003
  • The adsorption of co-cationic dual polymer system was investigated as was the fiber dispersion stability of a paper stock suspension. Polyaluminum chloride(PAC) and polyamidoamine epichlorohy-drin(PAE) polymers were used as wet-end additives. The adsorbed amounts of PAE polymer in a wet stock were measured by using polyelectrolytic PCD titration. The sheet forming experiments were carried out in a standard handsheet machine. Fiber dispersion stability and relative retention were evaluated in terms of M/K non-uniformity index and sheet basis weight, respectively. The PAE polymer adsorption of Langmuir-isothermal type decreased with increasing PAC addition level. The combination of the two cationic polymers presumably exerts a site-blocking effect by the low molecular weight PAC which gives a partial charge neutralization at a minimum level of addition. From a thermodynamic view point of PAE adsorption, an increase in adsorption entropy and a decrease in train number suggests that the PAR polymer has an extended conformation structure that potentially leads to an enhancement of the fiber dispersion stability. This conclusion is supported by handsheet experiments that examined the PAC-PAE dual polymer effects on the sheet formation and retention.

Surface Tension and Surface Adsorption of Binary Solutions (이성분 용액의 표면장력과 표면흡착)

  • Woon-Sun Ahn;Seihun Chang
    • Journal of the Korean Chemical Society
    • /
    • v.15 no.3
    • /
    • pp.153-158
    • /
    • 1971
  • With quasi-lattice model, surface tension equations for binary solution are derived assuming both mono-and multi-layer surface models. These equations are in agreement with Gibbs adsorption isotherm, and therefore surface relative adsorption can be calculated. The chemical potentials of bulk phase components obtained are also indifferent even if the influence of surface phase is taken into account.

  • PDF

Adsorption Equilibrium Moisture Content of Rough Rice, Brown Rice, White Rice and Rice Hull (벼, 현미, 백미 및 왕겨의 흡습평형함수율)

  • Keum, D. H.;Kim, H.
    • Journal of Biosystems Engineering
    • /
    • v.26 no.1
    • /
    • pp.57-66
    • /
    • 2001
  • This study was performed to determine adsorption equilibrium moisture contents of rough rice, brown rice, white rice and rice hull grown in Korea. EMC values were measured by static method using saturated salt solutions at three temperature levels of 20$\^{C}$, 30$\^{C}$ and 40$\^{C}$, and eight relative humidity levels in the range from 11.2% to 85.0%. The measured EMC values were fitted to modified Henderson, Chung-Pfost, and modified Oswin models by using nonlinear regression analysis. The results of comparing root mean square errors for three models showed that modified Henderson and Chung-Pfost models could serve as good models, and that modified Oswin model could not be applicable to rough rice, brown rice, white rice and rice hull.

  • PDF

The Adsorption Energetics and Geometry of Ketene Physisorbed on Ag(111)$^*$

  • Kim, Jeong Su;Dae, Hye Ryeong
    • Bulletin of the Korean Chemical Society
    • /
    • v.16 no.2
    • /
    • pp.143-148
    • /
    • 1995
  • Ketene (CH2CO) adsorption on Ag(111) has been studied in ultrahigh vacuum using electron energy loss spectroscopy and temperature programmed desorption. Ketene adsorbs molecularly on Ag(111) at temperatures below 126 K. The coverage increases linearly with exposure until saturation. No multilayer formation and no shift in desorption temperature with coverage were observed, indicating a lack of attractive interaction between adsorbate molecules. The desorption activation energy is estimated to be 7.8 kcal/mol by assuming first order kinetics and a pre-exponential factor of 1013 sec-1. The adsorption geometry of ketene on the surface is determined from the relative intensities of the vibrational energy loss peaks. The CCO axis of CH2CO is found to be almost parallel to (∼4°away from) the surface and the molecular plane is almost perpendicular to the surface (∼3°tilt).