• Title/Summary/Keyword: relative accuracy

Search Result 1,295, Processing Time 0.038 seconds

NASA Model Deviation Correction for Accuracy Improvement of Land Surface Temperature Extraction in Broad Region (NASA 모델의 편차보정에 의한 광역지역의 지표온도산출 정확도 향상)

  • Um Dae-Yong;Park Joon-Kyu;Kim Min-Kyu;Kang Joon-Mook
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2006.04a
    • /
    • pp.281-286
    • /
    • 2006
  • In this study, acquired time series Landsat TM/ETM+ image to extract land surface temperature for wide-area region and executed geometric correction and radiometric correction. And extracted land surface temperature using NASA Model, and I achieved the first correction by perform land coverage category for study region and applies characteristic emission rate. Land surface temperature that acquire by the first correction analyzed correlation with Meteorological Administration's temperature data by regression analysis, and established correction formula. And I wished to improve accuracy of land surface temperature extraction using satellite image by second correcting deviations between two datas using establishing correction formula. As a result, land surface temperature that acquire by 1,2th correction could correct in mean deviation of about ${\pm}3.0^{\circ}C$ with Meteorological Administration data. Also, could acquire land surface temperature about study region by relative high accuracy by applying to other Landsat image for re-verification of study result.

  • PDF

The study of the relationship between the similarity of cognitive map and the mental workload (인지지도 유사도와 정신적 작업부하와의 관계에 대한 연구)

  • Yu, Seung-Dong;Park, Peom
    • Journal of the Ergonomics Society of Korea
    • /
    • v.21 no.3
    • /
    • pp.47-58
    • /
    • 2002
  • The similarity of shape of shape of interface between human cognitive map and real product is the important factor to determine the human performance. Nevertheless, the degree of similarity between these has not been defined quantitatively in recent studies. Therefore, in this study, the cognitive map and the mental workload were measured by SMM(Sketch Map Method) and RNASA-TLX(Revision of NASA-Task Load Index). And the numerical expression of the accuracy point was suggested for the quantitative calculation of relative positional similarity between cognitive map and real product. In the experiment, nine subjects were participated and two kinds of vehicles were used. Mental workload was mental workload was measured immediately after the road test. The result of analysis on the relationship between accuracy and mental workload shows that the negative correlation exists on each vehicle, and the lower score of mental workloads id measured on the vehicle that has the higher score of accuracy between two vehicles.

Study on the High-Speed Machining Using High Speed Tooling System in Machining Center (범용 머시닝센터에서 주축증속기를 이용한 고속절삭에 관한 연구 -주축의 회전정도(Run-Out)가 가공특성에 미치는 영향 -)

  • 김경균;이용철;이득우;김정석;황경현
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.41-45
    • /
    • 1996
  • In order to realize the high-speed machining, the relative technologies for high speed machining tool and high speed machining are required now, The machining accuracy is influenced on the disturbance by the synchronized working conditions(cutting force, spindle Run-out, thermal deformation etc.) In this paper, the effect of spindle Run-out for the high speed machining is investigated. The results show that the spindle Run-out has a great influence on the machining accuracy in high speed machining.

  • PDF

Calibration and INvestigation into Measurement Performance of a Visual Sensing System (시각측정시스템의 캘리브레이션 및 측정성능 검토)

  • Kim, Jin-Young;Cho, Hyung-Suck
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.8
    • /
    • pp.113-121
    • /
    • 1999
  • It is necessary to calibrate measurement systems to enhance its measurement accuracy. The visual sensing system that is presented in our previous work has to be calibrated, too. It is a multiple mirror system for three-dimensional measurement, which is composed of a camera and a series of mirrors. It is important to calibrate the positions and orientations of the mirrors relative to the camera because they have direct influence on the relationship between the image plane and the task space. This paper presents the calibration method for the visual sensing system. To confirm the measurement performance of the implemented system. its measurement accuracy in measuring the locations in three-dimensional space is investigated. A series of experiments for measuring the locations of the circle-shaped marks are performed. Experimental results show that the sensing system can be effectively used for three-dimensional measurement.

  • PDF

Bundle Adjustment of Aerial Photographs using GCP Image Chip (영상칩 지상기준점을 이용한 항공사진 번들조정)

  • 김기홍;손홍규;김호성;백종하;이재원
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2004.11a
    • /
    • pp.239-243
    • /
    • 2004
  • Recently various thematic maps and image maps using aerial photograph and satellite imagery are frequently made. The geo-referencing is essential to make image map and topographic map using aerial photograph and satellite imagery. For this geo-referencing, Ground Control Points (GCPs) are needed. In this paper, we used GPS relative positioning to measure GCP ground coordinate and the accuracy of 8cm level was achieved. We made GCP image chips for the efficiency of geo-referencing and carried out the bundle adjustment of aerial photographs using GCP image chips to acquire the GCP photo coordinate with image matching technique. Finally we analyzed the accuracy of bundle adjustment compared to the accuracy of the case in using digital maps to acquire GCP photo coordinate.

  • PDF

Reliability and Applicability of Weather Forecasts for Irrigation Scheduling (관개계획을 위한 일기예보의 신뢰성과 활용성)

  • 이남호
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.41 no.6
    • /
    • pp.25-32
    • /
    • 1999
  • The purpose of this study is to analyse the accuracy of weather forecasts of temperature, precipitation probability , and sky condition and to evaluate the applicability of weather forecasts for the estimation of potential evapotranspiration for irrigation scheduling. Five weather station s were selected to compare forecasted and measured climatcal data. The error between forecasted and measured temperature was calculated and discussed. The accuracy of temperature forecast using relative frequency of the error was calculated . The temperature forecasting showed considerably high accuracy. Average sunshine hours for forecasted sky conditions were calculated and showed reasonable quality. From the reliability graphs, the forecasting precipation probabililty was reliable. Potential evapotranspirations were calculated and compared using forecast and measured temperatures. The weather forecast is considered usable for irrigation scheculing.

  • PDF

Box Feature Estimation from LiDAR Point Cluster using Maximum Likelihood Method (최대우도법을 이용한 라이다 포인트군집의 박스특징 추정)

  • Kim, Jongho;Yi, Kyongsu
    • Journal of Auto-vehicle Safety Association
    • /
    • v.13 no.4
    • /
    • pp.123-128
    • /
    • 2021
  • This paper present box feature estimation from LiDAR point cluster using maximum likelihood Method. Previous LiDAR tracking method for autonomous driving shows high accuracy about velocity and heading of point cluster. However, Assuming the average position of a point cluster as the vehicle position has a lower accuracy than ground truth. Therefore, the box feature estimation algorithm to improve position accuracy of autonomous driving perception consists of two procedures. Firstly, proposed algorithm calculates vehicle candidate position based on relative position of point cluster. Secondly, to reflect the features of the point cluster in estimation, the likelihood of the particle scattered around the candidate position is used. The proposed estimation method has been implemented in robot operating system (ROS) environment, and investigated via simulation and actual vehicle test. The test result show that proposed cluster position estimation enhances perception and path planning performance in autonomous driving.

Lidar Based Object Recognition and Classification (자율주행을 위한 라이다 기반 객체 인식 및 분류)

  • Byeon, Yerim;Park, Manbok
    • Journal of Auto-vehicle Safety Association
    • /
    • v.12 no.4
    • /
    • pp.23-30
    • /
    • 2020
  • Recently, self-driving research has been actively studied in various institutions. Accurate recognition is important because information about surrounding objects is needed for safe autonomous driving. This study mainly deals with the signal processing of LiDAR among sensors for object recognition. LiDAR is a sensor that is widely used for high recognition accuracy. First, we clustered and tracked objects by predicting relative position and speed of objects. The characteristic points of all objects were extracted using point cloud data of each objects through proposed algorithm. The Classification between vehicle and pedestrians is estimated using number of characteristic points and distances among characteristic points. The algorithm for classifying cars and pedestrians was implemented and verified using test vehicle equipped with LiDAR sensors. The accuracy of proposed object classification algorithm was about 97%. The classification accuracy was improved by about 13.5% compared with deep learning based algorithm.

Robotic Workplace Calibration Using Teaching Data of Work-Piece Fixed in Robotic Workplace for Robot Off-line Programming (로봇 오프라인 프로그래밍을 위한 작업장에 고정된 공작물 교시 정보를 이용한 로봇작업장 보정)

  • Jeong, Jun Ho;Kuk, Kum Hoan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.6
    • /
    • pp.615-621
    • /
    • 2013
  • The robot calibration has greatly improved the absolute accuracy of the industrial robot. However, the accuracy of the relative positions of robotic tool-tip at work-points on a work-piece is only slightly corrected by the robot calibration since there has been no practical method to eliminate the elements of the setup position errors at a robotic workplace. A robotic workplace calibration is demonstrated in this paper to minimize the relative position errors between a robot tool-tip and the work-point on a work-piece. The existing teaching and playback method has been developed for the robotic workplace calibration. This paper uses the work-piece fixed in a robotic work-place as measurement equipment instead of a special robot measurement equipment for the robotic workplace calibration. The positive effect of the robotic workplace calibration is supported by the results of computer simulation on an ideal robotic workplace model and an experiment at the actual robotic workplace.

A Study on Relative Positioning based on Acoustic Signal of Smart phone (스마트폰 음향신호 기반의 상대위치 인식 기술 연구)

  • Oh, Jongtaek
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.13 no.1
    • /
    • pp.229-234
    • /
    • 2013
  • As the popularization and proliferation of smart phone and location based services, the necessity and importance of the location based service based on the smart phone becomes significant. But existing technologies could not be applied in real situation due to the lack of accuracy, economy, and convenience, the method using the signal strength of WLAN is not accurate. In this paper, the technical back ground, implementation issue, and measurement result are described for the proposed relative positioning technology using acoustic signal and Bluetooth with smart phone. It is possible to measure the position of the smart phone with accuracy and simple device, and it is very proper especially for the indoor location based intelligent services.