• Title/Summary/Keyword: reinforcing ratio

Search Result 435, Processing Time 0.027 seconds

Slump and Mechanical Properties of Hybrid Steel-PVA Fiber Reinforced Concrete (강섬유와 PVA 섬유로 하이브리드 보강된 콘크리트의 슬럼프 및 역학적 특성)

  • Yang, Keun-Hyeok
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.5
    • /
    • pp.651-658
    • /
    • 2010
  • Sixteen concrete mixes reinforced with hybrid steel-polybinyl alcohol (PVA) fibers and a control concrete mix with no fiber were tested in order to examine the effect of the micro and macro fibers on the slump and different mechanical properties of concrete. Main variables investigated were length and volume fraction of steel and PVA fibers. The measured mechanical properties of hybrid fiber reinforced concrete were analyzed using the fiber reinforcing index and compared with those recorded from monolithic steel or PVA fiber reinforced concrete. The initial slump of hybrid fiber reinforced concrete decreased with the increase of the aspect ratio and the volume fraction of fibers. In addition, splitting tensile strength, modui of rupture and elasticity, and flexural toughness index of concrete increased with the increase of the fiber reinforcement index. Modulus of rupture and flexural toughness index of hybrid fiber reinforced concrete were higher than those of monolithic fiber reinforced concrete, though the total volume fraction of hybrid fibers was lower than that of monolithic fiber. For enhancing the flexural toughness index of hybrid fiber reinforced concrete, using the steel fiber of 60 mm length was more effective than using the steel fibers combined with 60 mm and 30 mm lengths.

A Study on the Reinforcing Effect Analysis of Aging Reservoir Reinforced with Surface Stabilizer (표층안정재로 보강된 노후 저수지의 보강효과 분석에 관한 연구)

  • Park, Seonghun;Seo, Segwan;Cho, Daesung
    • Journal of the Korean GEO-environmental Society
    • /
    • v.21 no.9
    • /
    • pp.5-14
    • /
    • 2020
  • This study analyzed the reinforcement effect by conducting laboratory test, model test and program analysis to utilize the surface stabilizer used for the restoration work of collapsed slopes as a reinforcing material for aging reservoirs that exhibits a curing reaction similar to cement. Based on the results of the laboratory test, a model test and program analysis were performed by applying 9% of the mixing ratio. As a result, when the surface stabilizer was used in aging reservoir, it was found that the flow of water only occurred on part of the slope and underground in reservoir. And the water flow could be reduced inside the reservoir. In addition, it was analyzed that the seepage discharge could be reduced by about 42% and the saturated area within the reservoir by about 73%, thereby securing the stability of the aged reservoir.

An Experimental Study on Flexural Behavior in Framed Structure of P.S.T Method (P.S.T 공법 라멘 구조물의 휨 거동 특성에 관한 실험적 연구)

  • Cui, Jie;Yoon, Jong Nam;Eum, Ki Young;Hong, Sung Nam;Park, Sun Kyu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.2
    • /
    • pp.144-152
    • /
    • 2011
  • The existing underground trenchless methods use reinforcing rod in steel tube to obtain structural stiffness. However, there are some problems such as inconvenience of work and expensive material fee which are resulted from limited working space and reinforcing work. To resolve these problems, a new trenchless method, namely P.S.T method (Prestressed Segment Tunnel Method), is developed which uses joint to connect the steel segment and form erection structure in underground construction. Further, installing strands for prestressing. In order to evaluate the flexural capacity of the P.S.T method structure, experiment was conducted. The parameters considered in the experiment are the span-to-depth ratio, diameter of steel tube at corner, prestressing force and welding of joint. Altogether examining the flexural behavior, the effect of deflection in structure according to different parameters has also been analysised.

Integrated Application of GPR, IE and IR Methods to Detection of the Rear Cavity of Concrete (콘크리트 배면공동 탐지를 위한 GPR, IE 및 IR기법의 복합 적용)

  • Noh, Myung-Gun;Oh, Seok-Hoon;Jang, Bong-Seok
    • Geophysics and Geophysical Exploration
    • /
    • v.12 no.4
    • /
    • pp.338-346
    • /
    • 2009
  • Integrated analysis of GPR, impact echo (IE) and impulse response (IR) was performed to detect the rear cavity of concrete for a test-bed which was made with the same scale and component ratio to the real concrete structure. The test-bed was designed to be capable of observing various response reflecting the existence of iron reinforcing bar and cavity. GPR survey did not clearly resolve the existence of the cavity, although distinguishable responses were observed in the presence of the cavity. In contrast, IE and IR method showed distinct responses, indicating the existence of the cavity. Finally, integrated application of the three methods makes it possible to exactly identify the location of the cavity, although the iron reinforcing bar made a little variation of response.

Effect of Curing Conditions on the Mechanical Properties of Strain-Hardening Cement Composite (SHCC) (양생조건에 따른 변형경화형 시멘트 복합체의 역학적 특성)

  • Yun, Hyun-Do;Kim, Sun-Woo;Kim, Yong-Cheol;Jeon, Esther;Kim, Yun-Su;Ji, Sang-Kyu
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.909-912
    • /
    • 2008
  • Fiber is an important ingredient in strain-hardening cementitious composite (SHCC), which can control fracture of cementitious composite by bridging action. The properties of reinforcing fiber, as tensile strength, aspect ratio and elastic modulus, have great effect on the fracture behavior of SHCC. But SHCC has serious problem as drying shrinkage because silica powder is used to make SHCC in order to improve bond strength between reinforcing fibers and cement matrix. Therefore, curing method (period and temperature) is very important for SHCC to show high tensile performance. a variety of experiments have being performed to access the performance of SHCC recently. This research emphasis is on the mechanical properties of SHCC made in Polyvinyl alcohol (PVA), Polyethylene (PE) fibers and steel cord (SC), and how curing method affects the composite property, and ultimately its strain-hardening performance.

  • PDF

Experimental investigation of SRHSC columns under biaxial loading

  • Wang, Peng;Shi, Qing X.;Wang, Feng;Wang, Qiu W.
    • Earthquakes and Structures
    • /
    • v.13 no.5
    • /
    • pp.485-496
    • /
    • 2017
  • The behavior of 8 steel reinforced high-strength concrete (SRHSC) columns, which comprised of four identical columns with cross-shaped steel and other four identical columns with square steel tube, was investigated experimentally under cyclic uniaxial and biaxial loading independently. The influence of steel configuration and loading path on the global behavior of SRHSC columns in terms of failure process, hysteretic characteristics, stiffness degradation and ductility were investigated and discussed, as well as stress level of the longitudinal and transverse reinforcing bars and steel. The research results indicate that with a same steel ratio deformation capacity of steel reinforced concrete columns with a square steel tube is better than the one with a cross-shaped steel. Loading path affects hysteretic characteristics of the specimens significantly. Under asymmetrical loading path, hysteretic characteristics of the specimens are also asymmetry. Compared with specimens under unidirectional loading, specimens subjected to bidirectional loading have poor carrying capacity, fast stiffness degradation, small yielding displacement, poor ductility and small ultimate failure drift. It also demonstrates that loading paths affect the deformation capacity or deformation performance significantly. Longitudinal reinforcement yielding occurs before the peak load is attained, while steel yielding occurs at the peak load. During later displacement loading, strain of longitudinal and transverse reinforcing bars and steel of specimens under biaxial loading increased faster than those of specimens subjected to unidirectional loading. Therefore, the bidirectional loading path has great influence on the seismic performance such as carrying capacity and deformation performance, which should be paid more attentions in structure design.

Properties of SBR Nanocomposites Reinforced with Organoclay/Carbon Black Dual Phase Fillers (카본 블랙/유기화 클레이로 보강된 SBR 나노 복합재료: 모폴로지와 기계적 물성)

  • Kang, B.S.;Kim, W.
    • Elastomers and Composites
    • /
    • v.42 no.1
    • /
    • pp.9-19
    • /
    • 2007
  • In this study, SBR (Styrene-butadiene rubber: solid content: 25 wt%) nanocomposites reinforced with carbon/organoclay(C18-MMT) were manufactured by a latex method. The SBR nanocomposites was made with the dual phase fillers. The mixing ratios, i.e. carbon black/C18-MMT, were 50/0, 49/1, 48/2, 47/3, 45/5, 44/6, 40/10. Total filler content of compounds was restricted to 50 phr. Cure characteristics and mechanical properties of SBR nanocomposites with carbon black and C18-MMT were evaluated. The SBR nanocomposites containing 49/1 ratio of carbon black/C18-MMT showed good dispersity and excellent values of ODR torque, tensile strength, modulus and tear energy. It was found that the improvement of the mechanical properties was mainly due to the reinforcing effect, i.e., the improvement of dispersion of silicates in the rubber matrix.

Comparison of Shear Properties of Crumb Rubber-Bottom Ash Mixture Considering Reinforcement Types of Waste Fishing Net (폐어망 보강형식에 따른 폐타이어-저회 혼합토의 전단특성 비교)

  • Kwon, Soon-Jang;Kim, Yun-Tae;Ahn, Jae-Hoon
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.9
    • /
    • pp.47-55
    • /
    • 2012
  • This paper investigates the shear properties of crumb rubber-bottom ash mixture reinforced by waste fishing net (WFN). Mixtures used in this experiment consist of crumb rubber and bottom ash (2mm~10mm) with the same weight ratio. In this study several series of direct shear tests were carried out on the five different specimens : unreinforced mixture, reinforced mixtures with 1 or 2 single-layered WFN, reinforced mixtures with 1 or 2 double-layered WFN. The experimental results indicated that the shear properties of reinforced crumb rubber-bottom ash mixture were strongly influenced by reinforcing layer of WFN. It was found that the shear strength and internal friction angle of the mixtures increased with an increase in reinforcing layer of WFN due to interlocking effect and friction between mixture and WFN.

Durability Performance Evaluation of PolyUrea for Seismic Retrofitting of RC Structures (구조물 내진 보강용 폴리우레아의 내구 성능 평가)

  • Cho, Chul-Min;Kim, Jang Jay Ho;Lee, Doo-Sung;Kim, Tae-Kyun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.3
    • /
    • pp.1-8
    • /
    • 2017
  • An experimental study is needed a reinforcing method for seismic load to apply for RC structures because a lot of earthquakes have frequently happened in the world and those also collapsed infrastructures or damaged human lives. The reinforcing effect of PolyUrea (PU) appeared to be excellent under blast and impact about RC structures. In this study, Stiff Type PolyUrea (STPU) had developed by manipulating the ratio of the components of prepolymer and hardener of PU. And the durability performance evaluation of STPU for deterioration and chemical resistance has been performed. Acid environmental exposure test and ultraviolet (UV) exposure test have been performed as the durability performance evaluation for STPU. Concrete carbonation exposure test and freezing and thawing test for concrete coated with STPU have been performed. The experimental result showed that STPU has high resisting capacity and durability in all tests. Therefore, STPU would be used as seismic reinforcement materials.

Service and Ultimate Load Behavior of Bridge Deck Reinforced with GFRP Rebars (GFRP 보강근으로 보강된 교량 바닥판의 성능과 사용성에 관한 실험연구)

  • Yu, Young Jun;Park, Young Hwan;Park, Ji Sun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.5A
    • /
    • pp.719-727
    • /
    • 2008
  • The tensile and bond performance of GFRP rebar are different from those of conventional steel reinforcement. It requires some studies on concrete members reinforced with GFRP reinforcing bars to apply it to concrete structures. GFRP has some advantages such as high specific strength, low weight, non-corrosive nature, and disadvantage of larger deflection due to the lower modulus of elasticity than that of steel. Bridge deck is a preferred structure to apply FRP rebars due to the increase of flexural capacity by arching action. This paper focuses on the behavior of concrete bridge deck reinforced with newly developed GFRP rebars. A total of three real size bridge deck specimens were made and tested. Main variables are the type of reinforcing bar and reinforcement ratio. Static test was performed with the load of DB-24 level until failure. Test results were compared and analyzed with ultimate load, deflection behavior, crack pattern and width.