• 제목/요약/키워드: reinforcing properties

검색결과 558건 처리시간 0.027초

에폭시 도막 철근의 내부식 성능에 관한 실험적 연구 (Perforrmance Tests of Epoxy-coated Reinforcing Bars : Corrosion Protection Properties)

  • 신영수;홍기섭;최완철
    • 콘크리트학회지
    • /
    • 제6권6호
    • /
    • pp.173-179
    • /
    • 1994
  • 콘크리트내 철근의 부식을 방지하여 내구성을 증대시키기 위해 국내에서 시험 생산한 에폭시도막 철근의 내부식성능을 실험, 평가하였다. 본 연구에서는 국내 산업규격(KS)과 미국재료시험기준 시험결과로부터 에폭시도막 철근을 내약품성능, 염화물 투과성은 양호하였다. 그러나, 에폭시도막 철근표면의 결함부에서 부식이 발생되었으며 도막두계 $200{\mu}m$ 미만의 시험체에서 부식발생률이 높았다. 4mm 정도의 부분에폭시 도막손상은 전체적인 부식에 영향을 미치지는 않았다. 도막의 결함이 생기지 않도록 에폭시도막 과정에서 철근의 표면처리에 주의가 특별히 필요하다.

Improving the Mechanical Properties of Salt Core through Reinforcing Fibers

  • Ahrom Ryu;Soyeon Yoo;Min-Seok Jeon;Dongkyun Kim;Kiwon Hong;Sahn Nahm;Ji-Won Choi
    • 센서학회지
    • /
    • 제32권3호
    • /
    • pp.159-163
    • /
    • 2023
  • Salt cores have attracted considerable attention for their application to the casting process of electric vehicle parts as a solution to ecological issues. However, the salt core still has low mechanical strength for use in high-pressure die casting. In this study, we investigated the improvements in the bending strength of KCl-based salt cores resulting from the use of reinforcing materials. KCl and Na2CO3 powders were used as matrix materials, and glass fiber and carbon fiber were used as reinforcing materials. The effects of carbon fiber and glass fiber contents on the bending strength properties were investigated. Here, we obtained a new fiber-reinforced salt core composition with improved bending strength for high-pressure die casting by adding a relatively small amount of glass fiber (0.3 wt%). The reinforced salt core indicates the improved properties, including a bending strength of 49.3 Mpa, linear shrinkage of 1.5%, water solubility rate of 16.25 g/min·m2 in distilled water, and hygroscopic rate of 0.058%.

Reinforcing Efficiencies of Two Different Cellulose Nanocrystals in Polyvinyl Alcohol-Based Nanocomposites

  • Park, Byung-Dae;Causin, Valerio
    • Current Research on Agriculture and Life Sciences
    • /
    • 제31권4호
    • /
    • pp.250-255
    • /
    • 2013
  • As a renewable nanomaterial, cellulose nanocrystal (CNC) isolated from wood grants excellent mechanical properties in developing high performance nanocomposites. This study was undertaken to compare the reinforcing efficiency of two different CNCs, i.e., cellulose nanowhiskers (CNWs) and cellulose nanofibrils (CNFs) from hardwood bleached kraft pulp (HW-BKP) as reinforcing agent in polyvinyl alcohol (PVA)-based nanocomposite. The CNWs were isolated by sulfuric acid hydrolysis while the CNFs were isolated by 2,2,6,6-tetramethylpiperidine-1-oxyl radical (TEMPO)-mediated oxidation. Based on measurements using transmission electron microscopy, the individual CNWs were about $6.96{\pm}0.87nm$ wide and $178{\pm}55nm$ long, while CNFs were $7.07{\pm}0.99nm$ wide. The incorporation of CNWs and CNFs into the PVA matrix at 5% and 1% levels, respectively, resulted in the maximum tensile strength, indicating different efficiencies of these CNCs in the nanocomposites. Therefore, these results suggest a relationship between the reinforcing potential of CNCs and their physical characteristics, such as their morphology, dimensions, and aspect ratio.

EPR의 열화에 의한 충.방전 전류 특성에 관한 연구 (A Study on Properties of Charge & Discharge Current by Degrade in EPR)

  • 이성일
    • 한국전기전자재료학회논문지
    • /
    • 제21권7호
    • /
    • pp.679-685
    • /
    • 2008
  • This paper describes the degraded properties of between the charge and discharge current for ${\gamma}$-ray irradiated in electric power cable rubbers using in nuclear power generating station. The charge and discharge current of degradation in EPR(Ethylene Propylene Rubber), which were irradiated with the radiant capacity of 0.033 Mrad/h, have been measured in order to investigate the influence of the atmosphere(in amount of reinforcing agent, moisture absorption and heat treatment) on electrical properties. When ${\gamma}$-ray were irradiated on the EPR with more reinforcing agent from 4 to 40 Phr, charge and discharge currents was increase due to the amount of reinforcing agent. It was verified that the discharging and charging currents irradiated by ${\gamma}$-ray were higher than those that was not irradiated. The amount of the degraded current was more after moisture absorption than before moisture absorption. The charge and discharge current after heat treatment was similar to that of before heat treatment and it was decreased with the time elapsed. As these properties related with ${\gamma}$-ray irradiation dose, it is suggested that these properties can be utilized as a index of irradiation degradation.

CAD/CAM을 이용한 구치부 전부도재 고정성 국소의치 지르코니아 코어의 연결부 설계에 따른 파절강도 (FRACTURE STRENGTH BETWEEN DIFFERENT CONNECTOR DESIGNS OF ZIRCONIA CORE FOR POSTERIOR FIXED PARTIAL DENTURES MANUFACTURED WITH CAD/CAM SYSTEM)

  • 서준용;박인임;이근우
    • 대한치과보철학회지
    • /
    • 제44권1호
    • /
    • pp.29-39
    • /
    • 2006
  • Statements of problem: Zirconia core is used for posterior fixed partial dentures because it's good mechanical properties. Stress is concentrated on connectors in fixed partial dentures, so the proper design of connector areas is needed for adequate mechanical long-term properties of any prosthesis. The area of connector is critical, but tooth size and surrounding soft tissue limit the connector design. Purpose: The purpose of this study is to compare fracture strengths between different connector designs of zirconia core for posterior fixed partial dentures manufactured with CAD/CAM system and determining the optimal connector design satisfying strength and hygiene. Material and method: The following four groups of 40 posterior fixed partial denture specimens(each group 10) were fabricated as followed; group 1 vertical height of connector is 3mm (control group, all groups have the same condition); group 2, lingual vertical 1mm reinforcement on connector; group 3, lingual vertical 2mm reinforcing on connector and group 4, lingual vertical 3mm reinforcing on connector. Specimens were subjected to compressive loading on the central fossa of pontic by instron. SEM was used to identify the initial crack and characterize the fracture mode. Results: The results were as follows: 1. The mean fracture load of the non-lingual reinforcing group was 1212N and the lingual vertical 1mm reinforcing group was 1510N, the lingual vertical 2mm reinforcing group was 1882N, the lingual vertical 3mm reinforcing group was 1980N. 2. The reinforcing groups were statistically significant compared to non-reinforcing groups(P<0.001). 3. There were 2, 3mm reinforcing groups that were statistically significant compared to 1mm reinforcing groups(P<0.001), and the 3mm reinforcing group was not statistically significant compared to 2mm reinforcing groups(P>0.05) 4. Fractures were initiated in gingival embrasures of connectors and processed to the loading site. Conclusion: In this study, lingual reinforcement of connector for improved strength of zirconia based fixed partial denture is nessasary. And long-term study for clinical application is required

고강도 및 내진용 철근의 굽힘성능 평가 (Bending performance evaluation of high strength and seismic purpose reinforcing bars)

  • 김희동
    • 한국산학기술학회논문지
    • /
    • 제18권9호
    • /
    • pp.492-498
    • /
    • 2017
  • 본 연구는 다양한 구조적 변수에 따른 고강도 및 내진용 이형철근의 굽힘가공 성능을 실험적으로 평가하는데 그 목적이 있다. 굽힘성능에 대한 실험적 연구수행을 위해 이형철근의 강종 및 강도, 직경, 굽힘가공 각도 및 내면 반지름 등을 변수로 하여 시험체를 제작하였다. 시험은 각 변수별 원 소재 철근에 대한 1차 인장강도시험, 원 소재 철근에 대한 1차 굽힘시험과 1차 굽힘시험 철근을 대상으로 한 2차 굽힘시험 그리고 2차 굽힘시험 이후 가력이 가능한 시험체를 대상으로 한 2차 인장강도시험을 수행하였다. 금번 고강도 및 내진용 철근에 대한 실험적 연구결과 항복강도 500 MPa 및 직경 D13 이하 이형철근은 굽힘각도 $135^{\circ}$, 내면 반지름 2db의 경우에도 1차 굽힘가공 후 인장측 표면결함은 나타나지 않았으며, 이형철근의 강도와 직경이 증가할수록 굽힘가공 성능이 저하 하는 것으로 나타났다. 그리고 본 연구에서 수행된 시험에서는 일반용 철근과 특수 내진용 철근의 시험결과 비교에서 두 이형철근 간에 유의미한 구조적 성능 차이는 확인하지 못하였다.

전단마찰시험에 의한 섬유혼합토와 지오그리드 사이의 마찰 특성 평가 (Friction Properties between Fiber-Mixed Soil and Geogrid by Shear Friction Tests)

  • 조삼덕;김진만;이광우;안주환
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2003년도 봄 학술발표회 논문집
    • /
    • pp.813-820
    • /
    • 2003
  • The shear friction tests using large direct shear test units were performed to evaluate the friction properties of fiber-mixed soil. The used materials and test conditions were flowing. Soils : SM and ML; mixing fibers : three types of polypropylene fibers(net type 38mm and 60mm, and line type 60mm), reinforcement : geogrid; mixing ratio:0.2% and 0.3%; degree of compaction : 85% and 95%. In the test results, the reinforcing effect of fiber mixed soil was confirmed.

  • PDF

지속 하중하에서 철근콘크리트 부재의 염화물 침투특성에 따른 철근부식에 관한 연구 (A Study on the Reinforcing Bar Corrosion Caused by Permeation of Chloride Ion Under Sustained Load)

  • 최일호;김형래;윤상천;지남용
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1999년도 학회창립 10주년 기념 1999년도 가을 학술발표회 논문집
    • /
    • pp.779-782
    • /
    • 1999
  • This study was carried out to estimate the effects of the loading conditions on the corrosion of reinforcing bars and permeation of chloride ion. The permeation of chlorides depends not only on the transfer properties in concrete but also on the load applied in the case of reinforced concrete structures. Recent studies reported that the loading conditions affected the corrosion rate of the reinforcing bars under existence of an external current supply. But it was not reported that loading conditions affected corrosion of reinforcing bar caused by the characteristics of permeation and the process of cracking. In this experiment, it was shown that the corrosion of reinforcing bars and the characteristics of permeating were greatly affected by the loading conditions.

  • PDF

고로슬래그 골재를 사용한 다공성 콘크리트의 물리·역학적 특성에 미치는 고로슬래그 미분말, 황토 및 보강섬유의 효과 (Effect of Blast Furnace Slag, Hwang-toh and Reinforcing Fibers on The Physical and Mechanical Properties of Porous Concrete Using Blast Furnace Slag Coarse Aggregate)

  • 이진형;박찬기
    • 한국농공학회논문집
    • /
    • 제52권5호
    • /
    • pp.53-60
    • /
    • 2010
  • The effects of blast furnace slag, hwang-toh, and reinforcing fiber on the physical and mechanical properties of porous concrete using blast furnace slag coarse aggregates have been evaluated in this study. The effect of the depending on replacement ratio of blast furnace slag to cement was investigated such that the replacement ratio was varied to 0 %, 25 % and 50 %. Also, the replacement ratios of hwang-toh were 0, 20 and 30 %. The polyvinyl alcohol fiber was used for the reinforcing fiber. A series of pH, unit mass, and void ratio tests have been performed to study the physical properties of the porous concrete using blast furnace slag coarse aggregates with the polyvinyl alcohol fiber and the replacement ratios of blast furnace slag, hwang-toh, while a series of compressive tests have been performed to evaluate the strength property depending on polyvinyl alcohol fiber and the replacement ratios of blast furnace slag, hwang-toh. The test results indicated that the physical and mechanical properties of porous concrete using blast furnace slag coarse aggregates is affected by the replacement ratio of blast furnace slag, and the fiber contents. According to the tests with polyvinyl alcohol fiber contents, the void ratio was decreased and the compressive strength was upgraded.

활엽수크라프트펄프 및 박테리아 셀룰로오스부터 제조한 종이의 물성 (Mechanical Properties of Papers Prepared from Hardwood KP and Bacterial Cellulose)

  • 조남석;김영신;박종문;민두식;안드레레오노비치
    • 펄프종이기술
    • /
    • 제29권4호
    • /
    • pp.53-63
    • /
    • 1997
  • Most cellulose resources come from the higher plants, but bacteria also synthesize same cellulose as in plants. Many scientists have been widely studied on the bacterial cellulose, the process development, manufacturing, even marketing of cellulose fibers. The bacterial celluloses are very different in its physical and morphological structures. These fibers have many unique properties that are potentially and commercially beneficial. The fine fibers can produce a smooth paper with enchanced its strength property. But there gave been few reports on the mechanical properties of the processing of bacterial cellulose into structural materials. This study were performed to elucidate the mechanical properties of sheets prepared from bacterial cellulose. Also reinforcing effect of bacterial cellulose on the conventional pulp paper as well as surface structures by scanning electron microscopy were discussed. Paper made from bacterial cellulose is 10 times much stronger than ordinary chemical pulp sheet, and the mixing of bacterial cellulose has a remarkable reinforcing effect on the papers. Mechanical strengthes were increased with the increase of bacterial cellulose content in the sheet. This strength increase corresponds to the increasing water retention value and sheet density with the increase of bacterial cellulose content. Scanning electron micrographs were shown that fine microfibrills of bacterial celluloses covered on the surfaces of hardwood pulp fibers, and enhanced sheet strength by its intimate fiber bonding.

  • PDF