• Title/Summary/Keyword: reinforcement methods

Search Result 999, Processing Time 0.03 seconds

A Study of the Construction Method for Soft Ground Reinforcement of Baekje Dynasty Based on the Low Swamp Remains in the Buyeo Area (백제시대 부여지역 저습지에 조성된 유적에서 나타나는 연약지반 개량공법 연구)

  • Cho, Weon-Chang
    • Journal of architectural history
    • /
    • v.19 no.6
    • /
    • pp.155-171
    • /
    • 2010
  • King Seong carried out the large-scale construction transferring the capital from Wungjin (Gongju) to Sabi (Buyeo) in 538. But because most of the Buyeo area was the low swamp in the time, it needed above all to form a site before transferring the capital. Until recently, in addition to the scientific excavation, the relief excavations for the construction of new building or the formation of road were conducted on many sites in the Buyeo area. As a result, many remains which were formed on the low swamp including the temple site of Neungsan-ri, Dongna Castle, the remains of Ssangbuk-ri (280-5 Bukpo, Hyeonnaedeul) and the remains of Gua-ri were identified. Also in these remains, the various engineering construction methods irrespective of the nature of remains were used for the purpose of the soft ground reinforcement as follows: mattress method of construction, pile designation, stone alignment, filing of decomposed granite soil, culverts and storage tanks. Especially, the mattress method of construction and the pile designation are thought to be the traditional engineering construction method at least in that they are appeared since the Three Han Sates era. And these soft ground construction methods had an effect on the construction of reservoir in Japan at the time. In the future, the construction method for soft ground reinforcement shall be concerned and studied further in the architecture and the civil engineering as well as the archeology.

Effect of Voice Reinforcement Method for Treatment of Vocal Nodules: Preliminary Study (음성강화기법의 성대결절 치료 효과)

  • Kim, Ji-Sung;Lee, Dong-Wook
    • Journal of the Korean Society of Laryngology, Phoniatrics and Logopedics
    • /
    • v.31 no.1
    • /
    • pp.13-18
    • /
    • 2020
  • Background and Objective The purpose of this study is to report the effect of voice therapy using the voice reinforcement method (VRM) in patients with vocal nodules. It is one of the holistic voice therapy methods for improving vocal mechanisms. VRM includes not only direct and indirect voice therapy, but also trial therapy and self-practice. Composed of four stages: vocal hygiene education, relaxation, reinforcement, and generalization. Materials and Methods The subjects were 13 patients who were diagnosed with vocal nodules. Acoustic analysis, auditory perceptual assessment, K-VHI-10 and nodules size were compared before and after voice therapy. Voice therapy was conducted by speech-language pathologist and the mean number was 4.2. Results In acoustic analysis, Jitter, vF0, vAm, Shimmer, NHR, and VTI were significantly decreased. F0 was increased after voice therapy for women. 'Grade', 'Rough,' and 'Breathy' were significantly decreased in the GRBAS scale after voice therapy. In addition, K-VHI-10 and nodules size were significantly decreased. Conclusion VRM seems to be an effective voice therapy method in vocal nodules treatment. In VRM, especially, trial therapy is given motivation for vocal nodules treatments and self-practice has a continuous therapeutic effect in everyday life. VRM can be also applied to the voice therapy for other hyper-functional dysphonia.

Axially-loaded multiplanar tubular KTX-joints: numerical analysis

  • Zhang, Chenhui;Zou, Bo;Yang, Guotao
    • Steel and Composite Structures
    • /
    • v.42 no.2
    • /
    • pp.173-190
    • /
    • 2022
  • With the development of spatial structures, the joints are becoming more and more complex to connect tubular members of spatial structures. In this study, an approach is proposed to establish high-efficiency finite element model of multiplanar KTX-joint with the weld geometries accurately simulated. Ultimate bearing capacity the KTX-joint is determined by the criterion of deformation limit and failure mechanism of chord wall buckling is studied. Size effect of fillet weld on the joint ultimate bearing capacity is preliminarily investigated. Based on the validated finite element model, a parametric study is performed to investigate the effects of geometric and loading parameters of KT-plane brace members on ultimate bearing capacity of the KTX-joint. The effect mechanism is revealed and several design suggestions are proposed. Several simple reinforcement methods are adopted to constrain the chord wall buckling. It is concluded that the finite element model established by proposed approach is capable of simulating static behaviors of multiplanar KTX-joint; chord wall buckling with large indentation is the typical failure mode of multiplanar KTX-joint, which also increases chord wall displacements in the axis directions of brace members in orthogonal plane; ultimate bearing capacity of the KTX-joint increases approximately linearly with the increase of fillet weld size within the allowed range; the effect mechanism of geometric and loading parameters are revealed by the assumption of restraint region and interaction between adjacent KT-plane brace members; relatively large diameter ratio, small overlapping ratio and small included angle are suggested for the KTX-joint to achieve larger ultimate bearing capacity; the adopted simple reinforcement methods can effectively constrain the chord wall buckling with the design of KTX-joint converted into design of uniplanar KT-joint.

Shear strengthening of seawater sea-sand concrete beams containing no shear reinforcement using NSM aluminum alloy bars

  • Yasin Onuralp Ozkilic;Emrah Madenci;Ahmed Badr;Walid Mansour;Sabry Fayed
    • Steel and Composite Structures
    • /
    • v.51 no.2
    • /
    • pp.153-172
    • /
    • 2024
  • Due to the fast development of constructions in recent years, there has been a rapid consumption of fresh water and river sand. In the production of concrete, alternatives such as sea water and sea sand are available. The near surface mounted (NSM) technique is one of the most important methods of strengthening. Aluminum alloy (AA) bars are non-rusting and suitable for usage with sea water and sand concrete (SSC). The goal of this study was to enhance the shear behaviour of SSC-beams strengthened with NSM AA bars. Twenty-four RC beams were cast from fresh water river sand concrete (FRC) and SSC before being tested in four-point flexure. All beams are the same size and have the same internal reinforcement. The major factors are the concrete type (FRC or SSC), the concrete degree (C25 or C50 with compressive strength = 25 and 50 MPa, respectively), the presence of AA bars for strengthening, the direction of AA bar reinforcement (vertical or diagonal), and the AA bar ratio (0, 0.5, 1, 1.25 and 2 %). The beams' failure mechanism, load-displacement response, ultimate capacity, and ductility were investigated. Maximum load and ductility of C25-FRC-specimens with vertical and diagonal AA bar ratios (1%) were 100,174 % and 140, 205.5 % greater, respectively, than a matching control specimen. The ultimate load and ductility of all SSC-beams were 16-28 % and 11.3-87 % greater, respectively, for different AA bar methods than that of FRC-beams. The ultimate load and ductility of C25-SSC-beams vertically strengthened with AA bar ratios were 66.7-172.7 % and 89.6-267.9 % higher than the unstrengthened beam, respectively. When compared to unstrengthened beams, the ultimate load and ductility of C50-SSC-beams vertically reinforced with AA bar ratios rose by 50-120 % and 45.4-336.1 %, respectively. National code proposed formulae were utilized to determine the theoretical load of tested beams and compared to matching experimental results. The predicted theoretical loads were found to be close to the experimental values.

Reinforcement effect of micropile and bearing characteristics of micropiled raft according to the cohesion of soil and stiffness of pile

  • KangIL Lee;MuYeun Kim;TaeHyun Hwang
    • Geomechanics and Engineering
    • /
    • v.37 no.5
    • /
    • pp.511-525
    • /
    • 2024
  • Micropiled raft has been used to support the existing and new structures or to provide the seismic reinforcement of foundation systems. Recently, research on micropile or micropiled raft has been actively conducted as the usage of micropile has increased, and the reinforcement effect of pile for the raft, the pile installation methods, and methods for calculating the bearing capacity of micropiled raft have been proposed. In addition, existing research results show that the behavior of this foundation system is different depending on the pile conditions and can be greatly influenced by the characteristics of the upper or lower ground depending on the conditions of pile. In other words, considering that the micropile is a friction pile, it can be predicted that the reinforcing effect of micropile for the raft and the bearing capacity of micropiled raft may depend on the cohesion of upper soil layer depending on the pile conditions. However, existing studies have limitations in that they were conducted without taking this into account. However, existing studies have limitations as they have been conducted without considering these characteristics. Accordingly, this study investigated the reinforcing effect of micropile and the bearing characteristics of micropiled raft by varying the cohesion of upper soil layer and the stiffness of pile which affect the behavior of micropiled raft. In this results, the reinforcing effect of micropile on the raft also increased as the cohesion of soil layer increased, but the reinforcing effect of pile was more effective in ground conditions with decreased the cohesion. In addition, the relationship between the axial stiffness of micropile and the bearing capacity of micropiled raft was found to be a logarithmic linear relationship. It was found that the reinforcing effect of micropile can increase the bearing capacity of raft by 1.33~ 3.72 times depending on the cohesion of soil layer and the rigidity of pile.

Application of PMF on Reinforcement Design of Agricultural Reservoirs against Disaster (저수지 재해대비 보강설계를 위한 PMF의 적용)

  • Jang, Jung-Seok;Chung, Jin-Ho;Bae, Sang-Su
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2005.10a
    • /
    • pp.324-329
    • /
    • 2005
  • This study considers that hydrologic stability evaluation of agricultural reservoirs designed by past standards and approximate increase methods of flood control when PMF(Probable maximum flood) flows in.

  • PDF

Development and Application of Lattice Shear Reinforcement for Flat Plate Slab-column Connection (래티스를 이용한 철근콘크리트 무량판 구조의 슬래브-기둥 접합부 전단보강 공법 개발)

  • Kang, Su-Min;Park, Sung-Woo;Bang, Joong-Seok;Lee, Do-Bum;Kwon, Chul-Hwan;Park, Hong-Gun
    • Journal of the Korea Institute of Building Construction
    • /
    • v.13 no.5
    • /
    • pp.482-490
    • /
    • 2013
  • Although the flat plate system is an efficient structural type due to the simplicity of its construction, the low story height, and the various plan design, the slab-column connections are vulnerable to punching shear failure from gravity load and eccentric shear failure from lateral load. To prevent the structure collapse, various construction methods of slab-column connection reinforcement are developed but none of these satisfies all of structural performance, economics, and constructability. This paper presents the reinforcement of slab-column connection with lattice bars. The structural performance is confirmed with the interior slab-column connection tests subjected to cyclic loading, and the economic feasibility is demonstrated from the structural design under the same condition with lattice bars, stud rails, and stirrups.

A Study on Vision-based Robust Hand-Posture Recognition Using Reinforcement Learning (강화 학습을 이용한 비전 기반의 강인한 손 모양 인식에 대한 연구)

  • Jang Hyo-Young;Bien Zeung-Nam
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.43 no.3 s.309
    • /
    • pp.39-49
    • /
    • 2006
  • This paper proposes a hand-posture recognition method using reinforcement learning for the performance improvement of vision-based hand-posture recognition. The difficulties in vision-based hand-posture recognition lie in viewing direction dependency and self-occlusion problem due to the high degree-of-freedom of human hand. General approaches to deal with these problems include multiple camera approach and methods of limiting the relative angle between cameras and the user's hand. In the case of using multiple cameras, however, fusion techniques to induce the final decision should be considered. Limiting the angle of user's hand restricts the user's freedom. The proposed method combines angular features and appearance features to describe hand-postures by a two-layered data structure and reinforcement learning. The validity of the proposed method is evaluated by appling it to the hand-posture recognition system using three cameras.

Shear Strength of PC-CIP Composite Beams with Shear Reinforcement (횡 보강된 프리캐스트와 현장타설 콘크리트 합성보의 전단강도)

  • Kim, Chul-Goo;Park, Hong-Gun;Hong, Geon-Ho;Kang, Su-Min
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.2
    • /
    • pp.189-199
    • /
    • 2014
  • Currently, in the precast concrete construction, Precast Concrete (PC) and Cast-In-Place (CIP) concrete with different concrete strengths are frequently used. However, current design codes do not specifically provide shear design methods for PC-CIP hybrid members using dual concrete strengths. In the present study, simply supported composite beams with shear reinforcement were tested. The test variables were the area ratio of the two concretes, spacing of shear reinforcement, and shear span-to-depth ratio. The shear strengths of the test specimens were evaluated by current design codes on the basis of the test results. The results showed that the shear strength of the composite beams was affected by the concrete strength of the compressive zone and also proportional to the flexural rigidity of un-cracked sections. Furthermore, the contribution of shear reinforcements varied according to the concrete strength of the compressive zone.

Shear Strength of Prestressed PC-CIP Composite Beams without Vertical Shear Reinforcements (수직전단보강이 없는 PS 콘크리트와 현장타설 콘크리트 합성보의 전단강도)

  • Kim, Chul-Goo;Park, Hong-Gun;Hong, Geon-Ho;Kang, Su-Min;Suh, Jung-Il
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.4
    • /
    • pp.533-543
    • /
    • 2014
  • Currently, composite construction of prestressed Precast Concrete (PC) and Cast-In-Place (CIP) concrete with different concrete strengths are frequently used in the modular construction. However, current design codes do not clearly define shear design methods for such composite beams. In this present study, simply supported prestressed PC-CIP composite beams without vertical shear reinforcement or only with horizontal shear reinforcement were tested to evaluate the effect of prestressing on the shear strength and the shear design method for such composite members. The test variables were the area ratio of PC and CIP concretes, prestressing force, shear span-to-depth ratio, and shear reinforcement ratio. The results showed that the shear strength was increased by the increase of prestressing force and prestressed PC area, and the decrease of shear span-to-depth ratio.