• Title/Summary/Keyword: reinforcement fracture

Search Result 291, Processing Time 0.024 seconds

Effects of Reinforcement of Steel Fibers on the Crack Propagation of Fissured Clays (균열점토의 균열진행에 대한 강섬유의 보강효과)

  • 유한규
    • Geotechnical Engineering
    • /
    • v.10 no.3
    • /
    • pp.119-134
    • /
    • 1994
  • In order to assess the possibility of using steel fibers in the fissured ciays, uniaxial compression tests were performed on both unreinforced and reinforced clay samples containing a pre-existing crack. Test results showed that the steel fiber reinforcement increased resistance to cracks initiation and their propagation, and therefore increased both stress at crack growth initiation and peak stress at failure. The increase in resistance to cracks initiation and their propagation was related to the arresting or deflecting the crack propagation in clay samples by steel fibers. A theoretical interpretation of experimental results was made using fracture mechanics theory and pull-out mechanisms in fiber reinforced materials. It was revealed that the steel fibers had bridging effect through their pull-out action that caused an increased resistance to the propagation of the cracks in the samples. The predicted pull-out force based on theoretical analyses agreed reasonably well with the measured values obtained from pull-out tests.

  • PDF

Simulations of spacing of localized zones in reinforced concrete beams using elasto-plasticity and damage mechanics with non-local softening

  • Marzec, I.;Bobinski, J.;Tejchman, J
    • Computers and Concrete
    • /
    • v.4 no.5
    • /
    • pp.377-402
    • /
    • 2007
  • The paper presents quasi-static plane strain FE-simulations of strain localization in reinforced concrete beams without stirrups. The material was modeled with two different isotropic continuum crack models: an elasto-plastic and a damage one. In case of elasto-plasticity, linear Drucker-Prager criterion with a non-associated flow rule was defined in the compressive regime and a Rankine criterion with an associated flow rule was adopted in the tensile regime. In the case of a damage model, the degradation of the material due to micro-cracking was described with a single scalar damage parameter. To ensure the mesh-independence and to capture size effects, both criteria were enhanced in a softening regime by nonlocal terms. Thus, a characteristic length of micro-structure was included. The effect of a characteristic length, reinforcement ratio, bond-slip stiffness, fracture energy and beam size on strain localization was investigated. The numerical results with reinforced concrete beams were quantitatively compared with corresponding laboratory tests by Walraven (1978).

Effect of Tio2 particles on the mechanical, bonding properties and microstructural evolution of AA1060/TiO2 composites fabricated by WARB

  • Vini, Mohamad Heydari;Daneshmand, Saeed
    • Advances in materials Research
    • /
    • v.9 no.2
    • /
    • pp.99-107
    • /
    • 2020
  • Reinforced aluminum alloy base composites have become increasingly popular for engineering applications, since they usually possess several desirable properties. Recently, Warm Accumulative Roll Bonding (WARB) process has been used as a new novel process to fabricate particle reinforced metal matrix composites. In the present study, TiO2 particles are used as reinforcement in aluminum metal matrix composites fabricated through warm accumulative roll bonding process. Firstly, the raw aluminum alloy 1060 strips with TiO2 as reinforcement particle were roll bonded to four accumulative rolling cycles by preheating for 5 min at 300℃before each cycle. The mechanical and bonding properties of composites have been studied versus different volume contents of TiO2 particles by tensile test, peeling test and vickers micro-hardness test. Moreover, the fracture surface and peeling surface of samples after the tensile test and peeling test have been studied versus different amount of TiO2 volume contents by scanning electron microscopy. The results indicated that the strength and the average vickers micro-hardness of composites improved by increasing the volume content of TiO2 particles and the amount of their elongation and bonding strength decreased significantly.

Application possibility of dowel bar in low floating slab system (다우얼 바의 저진동 슬래브 궤도 시스템 적용 가능성)

  • Park, Sung-Jae;Kim, Yong-Jae;Park, Myoung-Gyun;Jeon, Jong-Su;Lee, Du-Hwa;Park, Man-Ho
    • Proceedings of the KSR Conference
    • /
    • 2009.05b
    • /
    • pp.665-670
    • /
    • 2009
  • From the result of preceding study, there is no reinforcement such as dowel bar or etc. in Joint system of floating slab. Length of floating slab in preceding study is short than one of this study. If there is no reinforcement in the joint of long slab span, fracture of slab is predicted by difference between two slabs. Therefore using of dowel bar is demanded. In this study, General characteristic and preceding technology of dowel bar is researched for data of analysis study. And it is considered application of dowel bar in floating slab system.

  • PDF

Steel fibre reinforced concrete for elements failing in bending and in shear

  • Barros, Joaquim A.O.;Lourenco, Lucio A.P.;Soltanzadeh, Fatemeh;Taheri, Mahsa
    • Advances in concrete construction
    • /
    • v.1 no.1
    • /
    • pp.1-27
    • /
    • 2013
  • Discrete steel fibres can increase significantly the bending and the shear resistance of concrete structural elements when Steel Fibre Reinforced Concrete (SFRC) is designed in such a way that fibre reinforcing mechanisms are optimized. To assess the fibre reinforcement effectiveness in shallow structural elements failing in bending and in shear, experimental and numerical research were performed. Uniaxial compression and bending tests were executed to derive the constitutive laws of the developed SFRC. Using a cross-section layered model and the material constitutive laws, the deformational behaviour of structural elements failing in bending was predicted from the moment-curvature relationship of the representative cross sections. To evaluate the influence of the percentage of fibres on the shear resistance of shallow structures, three point bending tests with shallow beams were performed. The applicability of the formulation proposed by RILEM TC 162-TDF for the prediction of the shear resistance of SFRC elements was evaluated. Inverse analysis was adopted to determine indirectly the values of the fracture mode I parameters of the developed SFRC. With these values, and using a softening diagram for modelling the crack shear softening behaviour, the response of the SFRC beams failing in shear was predicted.

Nonlinear finite element analysis of ultra-high performance fiber reinforced concrete beams subjected to impact loads

  • Demirtas, Gamze;Caglar, Naci;Sumer, Yusuf
    • Structural Engineering and Mechanics
    • /
    • v.82 no.1
    • /
    • pp.81-92
    • /
    • 2022
  • Ultra-high performance fiber reinforced concrete (UHPFRC) is a composite building material with high ductility, fatigue resistance, fracture toughness, durability, and energy absorption capacity. The aim of this study is to develop a nonlinear finite element model that can simulate the response of the UHPFRC beam exposed to impact loads. A nonlinear finite element model was developed in ABAQUS to simulate the real response of UHPFRC beams. The numerical results showed that the model was highly successful to capture the experimental results of selected beams from the literature. A parametric study was carried out to investigate the effects of reinforcement ratio and impact velocity on the response of the UHPFRC beam in terms of midpoint displacement, impact load value, and residual load-carrying capacity. In the parametric study, the nonlinear analysis was performed in two steps for 12 different finite element models. In the first step, dynamic analysis was performed to monitor the response of the UHPFRC beam under impact loads. In the second step, static analysis was conducted to determine the residual load-carrying capacity of the beams. The parametric study has shown that the reinforcement ratio and the impact velocity affect maximum and residual displacement value substantially.

Effect of nano-Nb2O5 on the microstructure and mechanical properties of AZ31 alloy matrix nanocomposites

  • Huang, Song-Jeng;Kannaiyan, Sathiyalingam;Subramani, Murugan
    • Advances in nano research
    • /
    • v.13 no.4
    • /
    • pp.407-416
    • /
    • 2022
  • In this study, the gravitating mechanical stir casting method was used to fabricating the Nb2O5/AZ31 magnesium matrix nanocomposites. Niobium pentoxide (Nb2O5) used as reinforcement with two different weight percentages (3 wt % and 6 wt %). The influence of Nb2O5 on microstructure and mechanical properties has been investigated. The microstructure analysis showed that the composites are mainly composed of the primary α-magnesium phase and phase β-Mg17Al12 secondary phase. The secondary phase was dispersed evenly along the grain boundary of the Mg phase. The Nb2O5/AZ31 nanocomposites revealed that the grain size and its lamellar shape (β-Mg17Al12) were gradually refined. Different strengthening mechanisms were assessed in terms of their contributions. Results showed that composite material properties of hardness, yield strength, and fracture study were directly related to Nb2O5 as a reinforcement. The maximum values of the mechanical properties were achieved with the addition of 3 wt% Nb2O5 on the AZ31 alloy.

Analytical Study on Seismic Performance Assesment of Reinforced Concrete Shear Wall using High-Strength Reinforcing Bar (고강도 철근을 적용한 철근콘크리트 전단벽체의 내진성능평가를 위한 해석적 연구)

  • Cheon, Ju-Hyun;Kim, Kyung-Min;Park, Kwang-Min;Shin, Hyun-Mock
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.2
    • /
    • pp.138-145
    • /
    • 2017
  • The purpose of this study is to establish a reasonable analytical method for the estimation of overall behavior characteristic from cracking to yielding of rebar and crushing of concrete and seismic performance of reinforced concrete shear wall with high-strength reinforcing bar. A total of 8 specimens of reinforced concrete walls which have constant aspect ratio and a variety of variables such as reinforcement ratio, reinforcement yielding strength, reinforcement details, concrete design strength, section shape and whether lateral restraint hoop were selected and the analysis was performed by using a non-linear finite element analysis program (RCAHEST) applying the proposed constitutive equation by the authors. The mean and coefficient of variation for maximum load from the experiment and analysis results was predicted 1.04 and 8%. The mean and coefficient of variation for displacement corresponding maximum load from the experiment and analysis results was predicted 1.17 and 19% respectively. The analytical results were predicted relatively well the fracture mode and the overall behavior until fracture for all specimens. These results are expected to be used as basic data for application of high-strength reinforcing bar to design codes in the future.

Properties of Concrete using Surface Treatment Recycled Aggregates and Steel Fibers (강섬유보강(鋼纖維補强) 표면처리(表面處理) 순환골재(循環骨材)콘크리트의 특성(特性))

  • Bae, Ju-Seong;Kim, Nam-Wook
    • Resources Recycling
    • /
    • v.20 no.1
    • /
    • pp.46-53
    • /
    • 2011
  • The recycled aggregate produced from the waste concrete have the disadvantages in the quality for the natural aggregate. Therefore, in order to reuse the recycled aggregate widely it is a previous subject to improve the quality of recycled aggregate. We deduced the more effective surface treatment method using the colloidal silica solution for quality improvement of recycled aggregate. This study aimed to verify the influences of the deduced surface treatment method and the reinforcement of steel fiber to the properties of concrete. For this object, we inquired into the results of the strengths and the flexural failure tests for the five kinds of concrete specimens.

The Compaction and Compressive Strength Properties of CSG Material Reinforced Polypropylene Fiber (폴리프로필렌 섬유 보강 CSG 재료의 다짐 및 압축강도 특성)

  • Kim, Young-Ik;Yeon, Kyu-Seok;Kim, Yong-Seong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.52 no.4
    • /
    • pp.73-81
    • /
    • 2010
  • The cemented sand and gravel (CSG) method is a construction technique that adds cement and water to rock-like materials, such as rivered gravel or excavation muck which can be obtained easily at areas adjacent to dam sites. This study was performed to evaluate the compaction and compressive strength properties of stress-strain, elastic modulus and fracture mode CSG materials reinforced polypropylene fiber. Polypropylene fiber widely used for concrete reinforcement is randomly distributed into cemented sand. The two types of polypropylene fiber (monofillament and fibrillated fiber) were used and fiber fraction ratio was 0, 0.2 %, 0.4 %, 0.6 % and 0.8 % by the weight of total dry soil. The effect of fiber fraction ratio and fiber shape on compaction and compressive strength were investigated. The optimum moisture contents (OMC) of CSG material increased as fiber fraction increased and the dry density of CSG material decreased as fiber fraction. Also, the maximum increase in compressive strength was obtained at 0.4 % content of monofillament and fibrillated fiber. CSG material behaviour was controlled not only by fiber fraction but also fiber distribution, fiber shape and fiber type.