• Title/Summary/Keyword: reinforcement conditions

Search Result 731, Processing Time 0.021 seconds

Mechanical behaviour of rib-reinforced precast tunnel liner according to variable rib-reinforcement shapes (프리캐스트 터널 Liner의 리브보강 형상변화에 따른 역학적 거동 특성)

  • Lee, Gyu-Phil;Lee, Seong-Won;Hwang, Jae-Hong
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.11 no.3
    • /
    • pp.265-275
    • /
    • 2009
  • Due to the limitation of construction efficiency and structural safety, the application of the high covering and wide width tunnels was limited prior to the introduction of precast rut and cover tunnels. Therefore, a cut and cover tunnel structure with rib reinforcement is proposed to mechanically improve the safety on condition of high covering and wide width tunnel. Therefore, a technical problem that can provide a response similar to the actual filling conditions is analyzed by the finite element analyses, moreover, the mechanical behaviour of developed rib-reinforced precast tunnel liner through a large-sized model test will be investigated. The ultimate load of the developed rib-reinforced precast tunnel liner shows a 3% reduction compared to existing rib-reinforced precast tunnel liner, especially, the section of rib-reinforcement decreased to 55% compared to it of existing. Therefore, the stability of tunnel structure can be significantly improved through the developed rib-reinforced precast segment.

Behaviour Analysis of Crown Collapse under Tunnel Construction After Completing Reinforcement (보강완료 후 시공 중 터널 천단부 붕락 거동 분석)

  • Kim, Nagyoung;Baek, Seungchol;Min, Kyungjun;Kim, Bongsu;Heo, Yol
    • Journal of the Korean GEO-environmental Society
    • /
    • v.17 no.4
    • /
    • pp.39-46
    • /
    • 2016
  • The final stability analysis of the tunnel structure is generally evaluated by performing site monitoring to determine whether or not the measured value through the convergence after the completion of excavation in the face. When the ground conditions are so poor, the reinforcement around the tunnel was applied for enhancing the stability of tunnels. For the additional tunnel crown collapse or excessive displacement have occurred under construction, correlation analysis were performed for the comparison construction and numeric analyses. In this paper, we investigated the collapse types, tunnel collapse were mostly occurs at the crown and they were analyzed because of the geological conditions in the collapse zone. And also, it was analyzed as being correlated in the crown of tunnel exists a fault fracture zone which extends to the surface part. Thus, in case of ground conditions such as fault fracture zone with a tunnel extending from the crown to the surface, the behavior is larger than the behavior predicted by numerical method.

Evaluation on Moment-Curvature Relations and Curvature Ductility Factor of Reinforced Concrete Beams with High Strength Materials (고강도 재료를 사용한 철근콘크리트 보의 모멘트-곡률관계 및 곡률연성지수 평가)

  • Lee, Hyung-Joon
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.3
    • /
    • pp.283-294
    • /
    • 2013
  • The high strength materials have been more widely used in reinforced concrete structures, specially, the reinforcing steel is permitted to used in RC structures up to yielding strength of 600 MPa. The strength of materials in RC beam section effects on the behavior and ductility of the RC members. In this study, the numerical analysis has been conducted to obtain the complete moment-curvature relation and the curvature ductility factor for the rectangular RC beams sections under the various reinforcement conditions and the effects of concrete strength, yield strength of reinforcement steel on the behavior and the curvature ductility factor of RC beam sections have been evaluated. The compressive strength of concrete and yield strength of steel have effected in various manner on the behavior and the curvature ductility factor of RC beam sections under reinforcement conditions. In the case of beam sections with equal resisting moment. the curvature ductility factor of RC beam section decreased with an increase in the yield strength of steel and increased with an increase in the concrete strength. When the yield strength of steel increased from 400 MPa to 600 MPa, the curvature ductility factor reduced about 30% and as the concrete strength increased from 30 MPa to 70 MPa, the curvature ductility factor of RC beam section increased about 3 times.

Evaluation of Design Characteristics in the Reinforced Railroad Subgrade Through the Sensitivity Analysis (민감도 분석을 통한 철도보강노반 설계 특성 평가)

  • Kim, Dae-Sang;Hwang, Sung-Ho;Kim, Ung-Jin;Park, Young-Kon;Park, Seong-Yong
    • Journal of the Korean Geosynthetics Society
    • /
    • v.12 no.3
    • /
    • pp.15-22
    • /
    • 2013
  • By changing from ballasted track to concrete slab track, new type railroad subgrade is strongly required to satisfy strict regulations for displacement limitations of concrete slab track. In this study, sensitivity analysis was performed to assess the design characteristics of new type reinforced railroad subgrade, which could minimize residual settlement after track construction and maintain its function as a permanent railway roadbed under large cyclic load. With developed design program, the safety analysis (circular slip failure, overturning, and sliding) and the evaluation of internal forces developed in structural members (wall and reinforcement) were performed according to vertical installation spacing and stiffness of short and long geotextile reinforcement. Based on this study, we could evaluate the applicabilities of 0.4 H short geogrid length with 0.4 m vertical installation spacing of geotextile as reinforcement and what the ground conditions are for the reinforced railroad subgrade. And also, we could grasp design characteristics of the reinforced railroad subgrade, such as the importance of connecting structure between wall and reinforcement, boundary conditions allowing displacement at wall ends to minimize maximum bending moment of wall.

A Study on the Reinforcement Effect of Low Flow Mortal Injection Method Using Field Test (현장시험을 이용한 저유동성 몰탈주입공법의 보강효과에 관한 연구)

  • Junyeong Jang;Gwangnam Lee;Daehyeon Kim
    • The Journal of Engineering Geology
    • /
    • v.33 no.4
    • /
    • pp.599-609
    • /
    • 2023
  • In the seismic retrofitting of harbor breakwaters in Korea, the recovery rate is often uncertain due to site conditions and site conditions, and problems continue to arise. Therefore, in this study, we analyzed the recovery rate and compressive strength of the improved material through drilling survey by grouting confirmation method after applying low-fluidity mortar injection method, and furthermore, we checked the elastic modulus by downhole test and tomography to confirm the reinforcement effect of soft ground after ground improvement. The experimental results showed that the average shear wave velocity of the ground increased from 229 m/s to 288 m/s in BH-1 and BH-3 boreholes to a depth of 28.0 m, and the average shear wave velocity of the ground to a depth of 30.0 m tended to increase from 224 m/s to 282 m/s in the downhole test. This is believed to be a result of the increased stiffness of the ground after reinforcement. The results of the tomographic survey showed that the Vs of the soft ground of the sample at Site 1 increased from 113 m/s to 214 m/s, and the Vs of the sample at Site 2 increased from 120 m/s to 224 m/s. This shows that the stiffness of the ground after seismic reinforcement is reinforced with hard soil, as the Vs value satisfies 180 m/s to 360 m/s in the classification of rock quality according to shear wave velocity.

Analysis of displacement behavior in fractured fault and groundwater flow under tunnel excavation (터널굴착중 굴착면 단층파쇄대와 지하수 용출 구간에서 단계별 변위 거동 특성 분석)

  • Kim, Nag-Young;Park, Gun-Tae;Baek, Seung-Cheol;Lee, Kang-Hyun;Choi, Jin-Woong;Her, Yol
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.19 no.1
    • /
    • pp.71-82
    • /
    • 2017
  • It is necessary to conduct a detailed geotechnical investigation on the tunnel section in order to secure the tunnel design and construction stability. It is necessary for the importance of geotechnical investigation that needed for the analysis of distribution and size of fractured fault zone and distribution of groundwater in tunnel. However, if it is difficult to perform the ground survey in the tunnel design due to ground condition of the tunnel section and the limited conditions such as civil complaint, the tunnel design is performed using the result of the minimum survey. Therefore, if weathered fault zone exists in the face the reinforcement method is determined in the design process to secure the stability of the tunnel. The most important factor in reinforcing the tunnel excavation surface is to secure the stability of the tunnel by performing quick reinforcement. In particular, if groundwater leaching occurs on the excavation surface, more rapid reinforcement is needed. In this study, fractured fault zone exists on the tunnel excavation surface and displacement occurs due to weathered fracture zone. When the amount of groundwater leaching rapidly increased under the condition of displacement, the behavior of tunnel displacement was analyzed based on tunnel collapse. In the study, reinforcement measures were taken because the first stage displacement did not converge continuously. After the first reinforcement, the displacement was not converged due to increased groundwater leaching and the second stage displacement occurred and chimney collapse occurred.

Pull-out Strengths of GFRP-Concrete Bond Exposed to Applied Environmental Conditions

  • Kabir, Muhammad Ikramul;Samali, Bijan;Shrestha, Rijun
    • International Journal of Concrete Structures and Materials
    • /
    • v.11 no.1
    • /
    • pp.69-84
    • /
    • 2017
  • This paper presents results of an experimental investigation on the behaviour of bond between external glass fibre reinforced polymer reinforcement and concrete exposed to three different environmental conditions, namely, temperature cycles, wet-dry cycles and outdoor environment separately for extended durations. Single shear tests (pull-out test) were conducted to investigate bond strengths (pull-out strengths) of control (unexposed) and exposed specimens. Effect of the exposure conditions on the compressive strength of concrete were also investigated separately to understand the effect of changing concrete compressive strength on the pull-out strength. Based on the comparison of experimental results of exposed specimens to control specimens in terms of bond strengths, failure modes and strain profiles, the most significant degradation of pull-out strength was observed in specimens exposed to outdoor environment, whereas temperature cycles did not cause any deterioration of strength.

Flexural Behavior of RC Beams Strengthened with Steel Plates/Carbon Fiber Sheets(CFS) under Pre-Loading Conditions

  • Shin, Yeong-Soo;Hong, Geon-Ho
    • KCI Concrete Journal
    • /
    • v.12 no.1
    • /
    • pp.69-77
    • /
    • 2000
  • The reinforced concrete(RC) flexural members strengthened with steel plate/CFS at soffit have initial stresses and strains in reinforcements and concrete caused by the service loads at the time of retrofitting works. These initial residual stresses and strains of strengthened beams may affect the flexural performance of the rehabilitated beams. The objective of this study is to evaluate and verify the effectiveness of rehabilitation by external bonded steel plates and CFS to the tension face of the beams under three conditions of pre-loading. Thirteen beam specimens are tested and analyzed. Main test parameters are pre-loading conditions, strengthening materials and reinforcement ratio of specimens. The effect of test parameters on the strengthened beams is analyzed from the maximum load capacity, load-deflection relationship, state of stress of the materials. crack propagation phase, and failure modes. Both test results and design formulas of ACI Code provisions are compared and evaluated.

  • PDF

Determination of Optimal Adhesion Conditions for FDM Type 3D Printer Using Machine Learning

  • Woo Young Lee;Jong-Hyeok Yu;Kug Weon Kim
    • Journal of Practical Engineering Education
    • /
    • v.15 no.2
    • /
    • pp.419-427
    • /
    • 2023
  • In this study, optimal adhesion conditions to alleviate defects caused by heat shrinkage with FDM type 3D printers with machine learning are researched. Machine learning is one of the "statistical methods of extracting the law from data" and can be classified as supervised learning, unsupervised learning and reinforcement learning. Among them, a function model for adhesion between the bed and the output is presented using supervised learning specialized for optimization, which can be expected to reduce output defects with FDM type 3D printers by deriving conditions for optimum adhesion between the bed and the output. Machine learning codes prepared using Python generate a function model that predicts the effect of operating variables on adhesion using data obtained through adhesion testing. The adhesion prediction data and verification data have been shown to be very consistent, and the potential of this method is explained by conclusions.

Review of Pre-grouting Methods for Shield TBM Tunneling in Difficult Grounds (특수지반에서 쉴드TBM 굴착 시 프리그라우팅 적용 사례 고찰)

  • Yoon, Youngmin;Jeong, Hoyoung;Jeon, Seokwon
    • Tunnel and Underground Space
    • /
    • v.28 no.6
    • /
    • pp.528-546
    • /
    • 2018
  • Cases of TBM tunnelling have been consistently increasing worldwide. In many recent subsea and urban tunnelling projects, TBM excavation has been preferably considered due to its advantages over drill and blast tunnelling. Difficult ground conditions are highly probable to appear in subsea and urban tunnels because of the shallow working depth and alluvial characteristics. Under the difficult ground conditions, ground reinforcement measures should be considered including grouting, while it is of great importance to select the optimal grout material and injection method to cope with the ground condition. The benefits from TBM excavation, such as fast excavation, increased safety, and reduced environmental impact, can be achieved by applying appropriate ground reinforcement with the minimum overrun of cost and time. In this report, various grouting methods were reviewed so that they can be applied in difficult ground conditions. In addition, domestic and international cases of successful ground reinforcement for difficult grounds were introduced for future reference.