• Title/Summary/Keyword: reinforced concrete walls

Search Result 464, Processing Time 0.03 seconds

Teaching learning-based optimization for design of cantilever retaining walls

  • Temur, Rasim;Bekdas, Gebrail
    • Structural Engineering and Mechanics
    • /
    • v.57 no.4
    • /
    • pp.763-783
    • /
    • 2016
  • A methodology based on Teaching Learning-Based Optimization (TLBO) algorithm is proposed for optimum design of reinforced concrete retaining walls. The objective function is to minimize total material cost including concrete and steel per unit length of the retaining walls. The requirements of the American Concrete Institute (ACI 318-05-Building code requirements for structural concrete) are considered for reinforced concrete (RC) design. During the optimization process, totally twenty-nine design constraints composed from stability, flexural moment capacity, shear strength capacity and RC design requirements such as minimum and maximum reinforcement ratio, development length of reinforcement are checked. Comparing to other nature-inspired algorithm, TLBO is a simple algorithm without parameters entered by users and self-adjusting ranges without intervention of users. In numerical examples, a retaining wall taken from the documented researches is optimized and the several effects (backfill slope angle, internal friction angle of retaining soil and surcharge load) on the optimum results are also investigated in the study. As a conclusion, TLBO based methods are feasible.

Earthquake effect on the concrete walls with shape memory alloy reinforcement

  • Beiraghi, Hamid
    • Smart Structures and Systems
    • /
    • v.24 no.4
    • /
    • pp.491-506
    • /
    • 2019
  • Literature regarding concrete walls reinforced by super elastic shape memory alloy (SMA) bars is rather limited. The seismic behavior of a system concurrently including a distinct steel reinforced concrete (RC) wall, as well as another wall reinforced by super elastic SMA at the first story, and steel rebar at upper stories, would be an interesting matter. In this paper, the seismic response of such a COMBINED system is compared to a conventional system with steel RC concrete walls (STEEL-Rein.) and also to a wall system with SMA rebar at the first story and steel rebar at other stories ( SMA-Rein.). Nonlinear time history analysis at maximum considered earthquake (MCE) and design bases earthquake (DBE) levels is conducted and the main responses like maximum inter-story drift ratio and residual inter-story drift ratio are investigated. Furthermore, incremental dynamic analysis is used to accomplish probabilistic seismic studies by creating fragility curves. Results demonstrated that the SMA-Rein. system, subjected to DBE and MCE ground motions, has almost zero and 0.27% residual maximum inter-story drifts, while the values for the COMBINED system are 0.25% and 0.51%. Furthermore, fragility curves show that using SMA rebar at the base of all walls causes a larger probability of exceedance 3% inter-story drift limit state compared to the COMBINED system. Static push over analysis demonstrated that the strength of the COMBINED model is almost 0.35% larger than that of the two other models, and its general post-yielding stiffness is also approximately twice the corresponding stiffness of the two other models.

Experimental study on infilled frames strengthened by profiled steel sheet bracing

  • Cao, Pingzhou;Feng, Ningning;Wu, Kai
    • Steel and Composite Structures
    • /
    • v.17 no.6
    • /
    • pp.777-790
    • /
    • 2014
  • The purpose of this study is to investigate the seismic performance of reinforced concrete (RC) frames strengthened by profiled steel sheet bracing which takes the influence of infill walls into consideration. One-bay, two-story, 1/3 scale two specimens shared same feature of dimensions, one specimen consists only beams and columns; the other one is reinforced by profiled steel sheet bracing with infill walls. Hysteretic curves, envelope curves, stiffness degradation curves and energy dissipation capacities are presented based on test data. Test results indicate that the ultimate load of strengthened specimen has been improved by 225%. The stiffness of reinforced by profiled steel sheet bracing has been increased by 108%. This demonstrates that infill walls and profiled steel sheet bracing enhanced the strength and stiffness distinctly. Energy dissipation has an obvious increase after 12 cycles. This shows that the reinforced specimen is able to bear the lateral load effectively and absorb lots of seismic energy.

Evaluation on Seismic Capacity of reinforced Concrete Structure Based on Structural Testing (구조실험을 통한 철근콘크리트구조의 내진성능 평가)

  • 서수연
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2000.04a
    • /
    • pp.308-318
    • /
    • 2000
  • This paper introduces the acceptance criteria for reinforced concrete moment frames based on structural testing of ACI in preparing and proposes criteria for acceptable limiting drift and energy dissipation ratios of reinforced concrete shear walls for structural testing. Limiting drift and energy dissipation ratios were examined for tests on shear walls having ductile type failures. Test data were analyzed and compared to results for a suggested acceptance criteria that involves a limiting drift that is a function of aspect ratio a limiting energy dissipation ratio that is a function of displacement ductility and damping.

  • PDF

A Nonlinear Finite Element Analysis to Study the Behavior on Artificially Damaged R/C Shear Walls with Opening Configuration (개구부 설치를 위한 인위적 손상을 입은 전단벽에 관한 비선형 유한요소해석)

  • Han Min Ki;Park Wan Shin;Kim Hyo-Jin;Choi Gi-Bong;Choi Chang Sik;Yun Hyun Do
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.429-432
    • /
    • 2004
  • This paper discussed finite element method(FEM) models of the reinforced concrete rectangular shear walls with opening configuration and analysed under constant axial and monotonic lateral load using ABAQUS. The research comprises constitutive models to represent behavior of the materials that compose a wall on the basis of experimental data, development of techniques that are appropriate for analysis of reinforced concrete structures, verification, and calibration of the global model for reinforced concrete shear walls of increasing complexity. Results from the analyses of these FEM models offers significant insight into the flexural behavior of benchmark data.

  • PDF

High performance fibre reinforced cement concrete slender structural walls

  • Ganesan, N.;Indira, P.V.;Seena., P.
    • Advances in concrete construction
    • /
    • v.2 no.4
    • /
    • pp.309-324
    • /
    • 2014
  • In the design of reinforced concrete structural walls, in order to ensure adequate inelastic displacement behaviour and to sustain deformation demands imposed by strong ground motions, special reinforcement is considered while designing. However, these would lead to severe reinforcement congestion and difficulties during construction. Addition of randomly distributed discrete fibres in concrete improves the flexural behaviour of structural elements because of its enhanced tensile properties and this leads to reduction in congestion. This paper deals with effect of addition of steel fibres on the behavior of high performance fibre reinforced cement concrete (HPFRCC) slender structural walls with the different volume fractions of steel fibres. The specimens were subjected to quasi static lateral reverse cyclic loading until failure. The high performance concrete (HPC) used was obtained based on the guidelines given in ACI 211.1 which was further modified by prof.Aitcin (1998). The volume fraction of the fibres used in this study varied from 0 to 1% with an increment of 0.5%. The results were analysed critically and appraised. The study indicates that the addition of steel fibres in the HPC structural walls enhances the first crack load, strength, initial stiffness and energy dissipation capacity.

Design for earthquake-resistant short RC structural walls

  • Zygouris, Nick St.;Kotsovos, Gerasimos M.;Kotsovos, Michael D.
    • Earthquakes and Structures
    • /
    • v.8 no.3
    • /
    • pp.713-732
    • /
    • 2015
  • The application of the compressive force path method for the design of earthquake-resistant reinforced concrete structural walls with a shear span-to-depth ratio larger than 2.5 has been shown by experiment to lead to a significant reduction of the code specified transverse reinforcement within the critical lengths without compromising the code requirements for structural performance. The present work complements these findings with experimental results obtained from tests on structural walls with a shear span-to-depth ratio smaller than 2.5. The results show that the compressive force path method is capable of safeguarding the code performance requirements without the need of transverse reinforcement confining concrete within the critical lengths. Moreover, it is shown that ductility can be considerably increased by improving the strength of the two bottom edges of the walls through the use of structural steel elements extending to a small distance of the order of 100 mm from the wall base.

Seismic Response Analysis of Reinforced Concrete Wall Structure Using Macro Model

  • Kim, Dong-Kwan
    • International Journal of Concrete Structures and Materials
    • /
    • v.10 no.1
    • /
    • pp.99-112
    • /
    • 2016
  • During earthquake, reinforced concrete walls show complicated post-yield behavior varying with shear span-to-depth ratio, re-bar detail, and loading condition. In the present study, a macro-model for the nonlinear analysis of multi-story wall structures was developed. To conveniently describe the coupled flexure-compression and shear responses, a reinforced concrete wall was idealized with longitudinal and diagonal uniaxial elements. Simplified cyclic material models were used to describe the cyclic behavior of concrete and re-bars. For verification, the proposed method was applied to various existing test specimens of isolated and coupled walls. The results showed that the predictions agreed well with the test results including the load-carrying capacity, deformation capacity, and failure mode. Further the proposed model was applied to an existing wall structure tested on a shaking table. Three-dimensional nonlinear time history analyses using the proposed model were performed for the test specimen. The time history responses of the proposed method agreed with the test results including the lateral displacements and base shear.

High-rise Reinforced-concrete Building Incorporating an Oil Damper in an Outrigger Frame and Its Vibration Analysis

  • Omika, Yukihiro;Koshika, Norihide;Yamamoto, Yukimasa;Kawano, Kenichi;Shimizu, Kan
    • International Journal of High-Rise Buildings
    • /
    • v.5 no.1
    • /
    • pp.43-50
    • /
    • 2016
  • The reinforced-concrete multi-story shear-wall structure, which can free a building from beams and columns to allow the planning of a vast room, has increasingly been used in Japan as a high-rise reinforced-concrete structure. Since this structural system concentrates the seismic force onto multi-story shear walls inside, the bending deformation of the walls may cause excessive deformation on the upper floors during an earthquake. However, it is possible to control the bending deformation to within a certain level by setting high-strength and rigid beams (outriggers) at the top of the multi-story shear walls; these outriggers restrain the bending behavior of the walls. Moreover, it is possible to achieve high energy dissipation by placing vibration control devices on the outriggers and thus restrain the bending behavior. This paper outlines the earthquake response analysis of a high-rise residential tower to demonstrate the effectiveness of the outrigger frame incorporating vibration control devices.

An Estimate of the Yield Displacement of Coupled Walls for Seismic Design

  • Hernandez-Montes, Enrique;Aschheim, Mark
    • International Journal of Concrete Structures and Materials
    • /
    • v.11 no.2
    • /
    • pp.275-284
    • /
    • 2017
  • A formula to estimate the yield displacement observed in the pushover analysis of coupled wall lateral force-resisting systems is presented. The estimate is based on the results of an analytical study of coupled walls ranging from 8 to 20 stories in height, with varied amounts of reinforcement in the reinforced concrete coupling beams and walls, subjected to first-mode pushover analysis. An example illustrates the application of these estimates to the performance-based seismic design of coupled walls.