• Title/Summary/Keyword: reinforced concrete structures

Search Result 2,869, Processing Time 0.042 seconds

An innovative solution for strengthening of old R/C structures and for improving the FRP strengthening method

  • Tsonos, Alexander G.
    • Structural Monitoring and Maintenance
    • /
    • v.1 no.3
    • /
    • pp.323-338
    • /
    • 2014
  • In this study a new innovative method of earthquake-resistant strengthening of reinforced concrete structures is presented for the first time. Strengthening according to this new method consists of the construction of steel fiber ultra-high-strength concrete jackets without conventional reinforcement which is usually applied in the construction of conventional reinforced concrete jackets. An innovative solution is proposed also for the first time that ensures a satisfactory seismic performance of existing reinforced concrete structures, strengthened by using composite materials. The weak point of the use of such materials in repairing and strengthening of old R/C structures is the area of beam-column joints. According to the proposed solution, the joints can be strengthened with a steel fiber ultra-high-strength concrete jacket, while strengthening of columns can be achieved by using CFRPs. The experimental results showed that the performance of the subassemblage strengthened with the proposed mixed solution was much better than that of the subassemblage retrofitted completely with CFRPs.

Damage progression study in fibre reinforced concrete using acoustic emission technique

  • Banjara, Nawal Kishor;Sasmal, Saptarshi;Srinivas, V.
    • Smart Structures and Systems
    • /
    • v.23 no.2
    • /
    • pp.173-184
    • /
    • 2019
  • The main objective of this study is to evaluate the true fracture energy and monitor the damage progression in steel fibre reinforced concrete (SFRC) specimens using acoustic emission (AE) features. Four point bending test is carried out using pre-notched plain and fibre reinforced (0.5% and 1% volume fraction) - concrete under monotonic loading. AE sensors are affixed at different locations of the specimens and AE parameters such as rise time, AE energy, hits, counts, amplitude and duration etc. are obtained. Using the captured and processed AE event data, fracture process zone is identified and the true fracture energy is evaluated. The AE data is also employed for tracing the damage progression in plain and fibre reinforced concrete, using both parametric- and signal- based techniques. Hilbert - Huang transform (HHT) is used in signal based processing for evaluating instantaneous frequency of the acoustic events. It is found that the appropriately processed and carefully analyzed acoustic data is capable of providing vital information on progression of damage on different types of concrete.

A Study on the Changing Factors in Cost Estimate Standard for Reinforced Concrete Structure Maintenance (철근콘크리트 구조물 유지보수 공사비산정기준 개정요인에 관한 연구)

  • Song, Tae-Seok;An, Bang-Yul
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.05a
    • /
    • pp.315-316
    • /
    • 2021
  • The proportion of maintenance work has been increasing due to the recent aging of the infrastructure, but the standardized construction cost estimation standards are insufficient for this. In particular, reinforced concrete structures are being applied to many structures such as buildings and bridges, and various construction methods for maintenance of reinforced concrete structures are being developed and applied. In this study, we surveyed about the current status of the construction method for the maintenance work of reinforced concrete structures and analyze the factors of the revision of the construction cost estimate standard for the reinforced concrete structure maintenance.

  • PDF

Prediction of Post-cracking Behavior of Synthetic Fiber Reinforced Concrete Beams (합성섬유 보강 콘크리트 보의 후균열 거동 예측에 관한 연구)

  • 오병환;김지철;박대균;한일영;김방래;유홍종
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.587-592
    • /
    • 2002
  • Fiber reinforced concrete has been used for tunnel lining and rehabilitation of old structures. Recently, structural synthetic fiber was developed to overcome the corrosive properties of steel fibers. Fibers play a role to increase the tensile and cracking resistance of concrete structures. The Post cracking behavior must be clarified to predict cracking resistance of fiber reinforced concrete. The purpose of the present study is to develop a realistic analysis method for post cracking behavior of synthetic fiber reinforced concrete members.

  • PDF

LIFE-SPAN SIMULATION AND DESIGN APPROACH FOR REINFORCED CONCRETE STRUCTURES

  • An, Xuehui;Maekawa, Koichi;Ishida, Tetsuya
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.3-17
    • /
    • 2007
  • This paper provides an introduction to life-span simulation and numerical approach to support the performance design processes of reinforced concrete structures. An integrated computational system is proposed for life-span simulation of reinforced concrete. Conservation of moisture, carbon dioxide, oxygen, chloride, calcium and momentum is solved with hydration, carbonation, corrosion, ion dissolution. damage evolution and their thermodynamic/mechanical equilibrium. Coupled analysis of mass transport and damage mechanics associated with steel corrosion is presented for structural performance assessment of reinforced concrete. Multi-scale modeling of micro-pore formation and transport phenomena of moisture and ions are mutually linked for predicting the corrosion of reinforcement and volumetric changes. The interaction of crack propagation with corroded gel migration can also be simulated. Two finite element codes. multi-chemo physical simulation code (DuCOM) and nonlinear dynamic code of structural reinforced concrete (COM3) were combined together to form the integrated simulation system. This computational system was verified by the laboratory scale and large scale experiments of damaged reinforced concrete members under static loads, and has been applied to safety and serviceability assessment of existing structures. Based on the damage details predicted by the nonlinear finite element analytical system, the life-span-cost of RC structures including the original construction costs and the repairing costs for possible damage during the service life can be evaluated for design purpose.

  • PDF

Service-Life Prediction of Reinforced Concrete Structures under Corrosive Environment

  • Shimomura, Takumi
    • Corrosion Science and Technology
    • /
    • v.4 no.5
    • /
    • pp.171-177
    • /
    • 2005
  • A comprehensive framework for numerical simulation of time-dependent performance change of reinforced concrete (RC) structures subjected to chloride attack is presented in this paper. The system is composed of simplified computational models for transport of moisture and chloride ions in concrete pore structure and crack, corrosion of reinforcement in concrete and mechanical behavior of RC member with reinforcement corrosion. Service-life of RC structures under various conditions is calculated.

Performance Evaluation Methods of Reinforced Concrete Structures using Nonlinear Static Analysis (비선형 정적해석을 이용한 철근 콘크리트 구조물 성능평가기법)

  • Yun, Sung-Hwan;Park, Tae-Hyo;Lee, Do-Hyung
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.373-376
    • /
    • 2006
  • There are representative two performance evaluation methods for performance-based design(PBD) of reinforced concrete structures by the nonlinear static analysis, one method includes the capacity spectrum method(CSM) suggested in ATC-40(996) and the other is the displacement coefficient method(DCM) in FEMA-273(1997). The objective of this paper is to compare and verify two methods and suggest the displacement-based design for new performance evaluation of reinforced concrete structures.

  • PDF

An Experimental Study on the Chloride Diffusion of Concrete by Experimental in Room of Individual and Combined Deterioration (단독 및 복합열화의 실내촉진실험에 의한 콘크리트의 염화물 확산에 관한 실험적 연구)

  • Kim, Young-Sun;Koo, Kyung-Mo;Kim, Young-Duck;Cho, Bong-Suk;Kim, Gyu-Yong;Kim, Moo-Han
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05a
    • /
    • pp.574-577
    • /
    • 2006
  • Recently, the deterioration due to salt damage and carbonation as the main factors of deteriaoration of the domestic reinforced concrete structures has been increased. Also the national and social concern about the durability recovery of the deteriorated reinforced concrete structures is geratly being raised. Therefore, it is the final purposes of this study to develop the performance evaluation technique for durability of reinforced concrete structures deteriorated due to salt damage and carbonation with the proposal of the service life prediction method for the investigation and diagnosis of reinforced concrete structures, and accelerated test in Lab.

  • PDF

Impact of seawater corrosion and freeze-thaw cycles on the behavior of eccentrically loaded reinforced concrete columns

  • Diao, Bo;Sun, Yang;Ye, Yinghua;Cheng, Shaohong
    • Ocean Systems Engineering
    • /
    • v.2 no.2
    • /
    • pp.159-171
    • /
    • 2012
  • Reinforced concrete structures in cold coastal regions are subjected to coupled effects of service load, freeze-thaw cycles and seawater corrosion. This would significantly degrade the performance and therefore shorten the service life of these structures. In the current paper, the mechanical properties of concrete material and the structural behaviour of eccentrically loaded reinforced concrete columns under multiple actions of seawater corrosion, freeze-thaw cycles and persistent load have been studied experimentally. Results show that when exposed to alternating actions of seawater corrosion and freeze-thaw cycles, the compressive strength of concrete decreases with the increased number of freeze-thaw cycles. For reinforced concrete column, if it is only subjected to seawater corrosion and freeze-thaw cycles, the load resistance capacity is found to be reduced by 11.5%. If a more practical service condition of reinforced concrete structures in cold coastal regions is simulated, i.e., the environmental factors are coupled with persistent loading, a rapid drop of 15% - 26.9% in the ultimate capacity of the eccentrically loaded reinforced concrete column is identified. Moreover, it is observed that the increase of eccentric load serves to accelerate the deterioration of column structural behavior.

A Study on the Factors for Revision of the Reinforced Concrete Construction Cost Estimation Standard (철근콘크리트 공사비산정기준 개정요인에 관한 연구)

  • Song, Tae-seok;Ahn, Bang-yul
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.04a
    • /
    • pp.198-199
    • /
    • 2022
  • Reinforced concrete is the most widely used construction method for constructing structures. There is a lot of process for constructing Reinforced concrete structures such as installing rebars, molds and support, mixing and placing concrete, and curing. So the reinforced concrete work accounts for a large part of the total construction cost for constructing structure. For this reason a reasonable standard for estimating the cost of reinforced concrete construction has to be established and it will be possible to secure appropriate costs for construction work. In this study, we analyze the revision factors of the standard for estimating the cost of reinforced concrete construction and present them to secure reasonable construction costs.

  • PDF