• Title/Summary/Keyword: reinforced concrete structural analysis

Search Result 1,294, Processing Time 0.032 seconds

Analysis of Differential Shortening of Reinforced Concrete High - Rise Building (철근콘크리트 고층 건물의 부등 수직변위 해석)

  • 신영수;성렬영;신성우
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1993.04a
    • /
    • pp.142-147
    • /
    • 1993
  • In the reinforced concrete structure, as the height of building structure increases, the accurate estimation of differential column shortening is important factor in the structural design. In this study, the analysis of column shortening is applied to 36-story building structure to be built in time. As a result, it may found that, as the difference of compressive stress become larger, differential shortening effect due to creep and shrinkage are more signicant factor to structural designer.

  • PDF

Thermo-mechanical analysis of reinforced concrete slab using different fire models

  • Suljevic, Samir;Medic, Senad;Hrasnica, Mustafa
    • Coupled systems mechanics
    • /
    • v.9 no.2
    • /
    • pp.163-182
    • /
    • 2020
  • Coupled thermo-mechanical analysis of reinforced concrete slab at elevated temperatures from a fire accounting for nonlinear thermal parameters is carried out. The main focus of the paper is put on a one-way continuous reinforced concrete slab exposed to fire from the single (bottom) side as the most typical working condition under fire loading. Although contemporary techniques alongside the fire protection measures are in constant development, in most cases it is not possible to avoid the material deterioration particularly nearby the exposed surface from a fire. Thereby the structural fire resistance of reinforced concrete slabs is mostly influenced by a relative distance between reinforcement and the exposed surface. A parametric study with variable concrete cover ranging from 15 mm to 35 mm is performed. As the first part of a one-way coupled thermo-mechanical analysis, transient nonlinear heat transfer analysis is performed by applying the net heat flux on the exposed surface. The solution of proposed heat analysis is obtained at certain time steps of interest by α-method using the explicit Euler time-integration scheme. Spatial discretization is done by the finite element method using a 1D 2-noded truss element with the temperature nodal values as unknowns. The obtained results in terms of temperature field inside the element are compared with available numerical and experimental results. A high level of agreement can be observed, implying the proposed model capable of describing the temperature field during a fire. Accompanying thermal analysis, mechanical analysis is performed in two ways. Firstly, using the guidelines given in Eurocode 2 - Part 1-2 resulting in the fire resistance rating for the aforementioned concrete cover values. The second way is a fully numerical coupled analysis carried out in general-purpose finite element software DIANA FEA. Both approaches indicate structural fire behavior similar to those observed in large-scale fire tests.

Earthquake Response Analysis of a RC Bridge employing a Point Hinge Model (포인트 힌지 모델을 적용한 철근콘크리트 교량의 지진응답 해석)

  • 이도형;전종수;박대효
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.04a
    • /
    • pp.419-426
    • /
    • 2003
  • Simplified modeling approach for the seismic behavior of a reinforced concrete bridge is investigated in this paper. For this purpose, a hysteretic axial-flexure interaction model was developed and implemented into a nonlinear finite element analysis program. Thus, the seismic response of reinforced concrete bridge piers was evaluated by the simplified point hinge representations. Comparative studies for reinforced concrete bridge piers indicated that the analytical predictions obtained with the new formulations showed a good correlation with experimental results. In addition, seismic response analysis of a reinforced concrete bridge utilizing the simplified point hinge model revealed the adequacy and applicability of the present development.

  • PDF

Investigation of nonlinear behaviour of reinforced concrete frames having different stiffening members

  • Gursoy, Senol
    • Computers and Concrete
    • /
    • v.13 no.5
    • /
    • pp.679-694
    • /
    • 2014
  • The selected carrier systems of reinforced concrete frame buildings are quite important on structural damages. In this study are examined comparatively nonlinear behaviours of reinforced concrete frames which having different stiffening members under a horizontal load. In that respect, the study consists of six parametric models. With this purpose, nonlinear structural analyses of reinforced concrete frames which having different stiffening members were carried out with LUSAS which uses the finite element method. Thus, some conclusions and recommendations to mitigate the damage of reinforced concrete buildings in the future designs are aimed to present. The obtained results revealed that in terms of performance, the x-shaped diagonal elements can be used as an option to shear walls. In addition, it was found that frame-2, frame-3 and frame-4 showed a better performance than traditional frame system (frame-1).

Flexural analysis of steel fibre-reinforced concrete members

  • Chalioris, Constantin E.;Panagiotopoulos, Thomas A.
    • Computers and Concrete
    • /
    • v.22 no.1
    • /
    • pp.11-25
    • /
    • 2018
  • A numerical approach for the evaluation of the flexural response of Steel Fibrous Concrete (SFC) cross-sections with arbitrary geometry, with or without conventional steel longitudinal reinforcing bars is proposed. Resisting bending moment versus curvature curves are calculated using verified non-linear constitutive stress-strain relationships for the SFC under compression and tension which include post-peak and post-cracking softening parts. A new compressive stress-strain model for SFC is employed that has been derived from test data of 125 stress-strain curves and 257 strength values providing the overall compressive behaviour of various SFC mixtures. The proposed sectional analysis is verified using existing experimental data of 42 SFC beams, and it predicts the flexural capacity and the curvature ductility of SFC members reasonably well. The developed approach also provides rational and more accurate compressive and tensile stress-strain curves along with bending moment versus curvature curves with regards to the predictions of relevant existing models.

Computational impact responses of reinforced concrete slabs

  • Mokhatar, S.N.;Abdullah, R.;Kueh, A.B.H.
    • Computers and Concrete
    • /
    • v.12 no.1
    • /
    • pp.37-51
    • /
    • 2013
  • The responses of reinforced concrete slabs subject to an impact loading near the ultimate load range are explored. The analysis is carried out on a simply supported rectangular reinforced concrete slab using a nonlinear explicit dynamic procedure and considering three material models: Drucker-Prager, modified Drucker-Prager, and concrete damaged plasticity, available in the commercial finite element software, ABAQUS/Explicit. For comparison purposes, the impact force-time response, steel reinforcement failure, and concrete perforation pattern are verified against the existing experimental results. Also, the effectiveness of mesh density and damage wave propagation are studied independently. It is shown that the presently adopted finite element procedure is able to simulate and predict fairly accurate the behavior of reinforced concrete slab under impact load. More detailed investigations are however demanded for the justification of effects coming from an imperfect projectile orientation as well as the load and structural surface conditions, including the impulsive contacted state, which are inevitable in an actual impact environment.

Seismic Analysis of RC Piers being repaired/retrofitted (보수.보강된 철근콘크리트 교각의 내진해석)

  • Lee, Do-Hyung
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05a
    • /
    • pp.198-201
    • /
    • 2006
  • In order to evaluate the seismic performance of reinforced concrete bridge piers, an inelastic time-dependent element is proposed. The proposed element enables increased characteristics due to structural intervention (i.e., repair and retrofitting) to be accurately reflected to the degraded strength and stiffness of the members. Comparative studies are conducted for reinforced concrete bridge columns being repaired and retrofitted and show good correlation between analytical prediction and experimental results. In addition, a nonlinear time-history analysis of a reinforced concrete bridge under multiple earthquakes confirms the applicability and effectiveness of the present development.

  • PDF

The Optimum Design of Reinforced Concrete Cylindrical Shell Tanks (철근콘크리트 원통 SHELL TANK 에 관한 최적설계)

  • Choi, Yeal;Kang, Moon-Myung;Pulmano, Victor. A.
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1992.10a
    • /
    • pp.61-66
    • /
    • 1992
  • The present paper deals with the optimum design of reinforced concrete cylindrical shell tanks in according to ACI 318-89 code. The purpose of this investigation is to find the optimum values of the steel ratio and the effective thickness of reinforced concrete cylindrical shell tanks. The analysts is carried out using a simple computer programming, SMAP(segmented matrix analysis package). The optimization is carried out using GINO programming. Optimum results for cylindrical shell tanks with uniform, stepwise and piecewise linealy varying thicknesses are presented.

  • PDF

Reliability Assessments and Design Load Factors for Reinforced Concrete Containment Structures of Nuclear Power Plant

  • Han, Bong-Koo
    • Nuclear Engineering and Technology
    • /
    • v.29 no.6
    • /
    • pp.444-450
    • /
    • 1997
  • The current ASME code for reinforced concrete containment structures are not based on probability concepts. The stochastic nature of natural hazard or accidental loads and the variations of material properties require a probabilistic approach for a rational assessment of structural safety and performance. The paper develops design load factors for the serviceability limit state of reinforced concrete containment structures. The target limit state probability is determined and the load factors are calculated by the numerical analysis. Design load factors are proposed and carried out the reliability assessments.

  • PDF

Size-Effect Analyses of Shear Behavior in Reinforced Concrete Beams (철근콘크리트 보의 전단거동의 크기효과 해석)

  • 변근주;하주형;송하원
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.04a
    • /
    • pp.321-326
    • /
    • 1998
  • Shear failure of reinforced concrete beams is serious problem due to sudden brittle failure and many experimental results proved that size effect in shear behavior is an important feature of reinforced concrete members. For this reason, the structural safety of the reinforced concrete beams for shear has been checked by applying empirical design formula, which includes the size-effect, derived from experimental data. However, as the sizes of reinforced concrete members become extremely large, experiments sometimes become very difficult so that the formula or the experimental data could not be obtained and size-effect analyses of shear behavior become significant. In this study, size-effect analysis of shear behavior in reinforced concrete beams is performed by modeling tension stiffening/shear stiffening on reinforced concrete and the tension softening/shear softening on plain concrete. Then, the influences of models in the size-effect analyses of shear behavior in reinforced concrete beams are analyzed.

  • PDF