• Title/Summary/Keyword: reinforced concrete shear wall

Search Result 338, Processing Time 0.025 seconds

Validation of the seismic response of an RC frame building with masonry infill walls - The case of the 2017 Mexico earthquake

  • Albornoz, Tania C.;Massone, Leonardo M.;Carrillo, Julian;Hernandez, Francisco;Alberto, Yolanda
    • Advances in Computational Design
    • /
    • v.7 no.3
    • /
    • pp.229-251
    • /
    • 2022
  • In 2017, an intraplate earthquake of Mw 7.1 occurred 120 km from Mexico City (CDMX). Most collapsed structural buildings stroked by the earthquake were flat slab systems joined to reinforced concrete (RC) columns, unreinforced masonry, confined masonry, and dual systems. This article presents the simulated response of an actual six-story RC frame building with masonry infill walls that did not collapse during the 2017 earthquake. It has a structural system similar to that of many of the collapsed buildings and is located in a high seismic amplification zone. Five 3D numerical models were used in the study to model the seismic response of the building. The building dynamic properties were identified using an ambient vibration test (AVT), enabling validation of the building's finite element models. Several assumptions were made to calibrate the numerical model to the properties identified from the AVT, such as the presence of adjacent buildings, variations in masonry properties, soil-foundation-structure interaction, and the contribution of non-structural elements. The results showed that the infill masonry wall would act as a compression strut and crack along the transverse direction because the shear stresses in the original model (0.85 MPa) exceeded the shear strength (0.38 MPa). In compression, the strut presents lower stresses (3.42 MPa) well below its capacity (6.8 MPa). Although the non-structural elements were not considered to be part of the lateral resistant system, the results showed that these elements could contribute by resisting part of the base shear force, reaching a force of 82 kN.

Computational earthquake performance of plan-irregular shear wall structures subjected to different earthquake shock situations

  • Cao, Yan;Wakil, Karzan;Alyousef, Rayed;Yousif, Salim T.;Jermsittiparsert, Kittisak;Ho, Lanh Si;Alabduljabbar, Hisham;Alaskar, Abdulaziz;Alrshoudi, Fahed;Mohamed, Abdeliazim Mustafa
    • Earthquakes and Structures
    • /
    • v.18 no.5
    • /
    • pp.567-580
    • /
    • 2020
  • In this paper, irregularly designed planar reinforced concrete wall structures are investigated computationally. For this purpose, structures consisting of four regular and irregular models of short-order (two-class) and intermediate (five-class) types have been investigated. The probabilistic evaluation of seismic damage of these structures has been performed by using the incremental inelastic dynamic analysis to produce the seismic fragility curve at different levels of damage. The fragility curves are based on two classes of maximum damage indices and the Jeong-Nansha three-dimensional damage index. It was found that there is a significant increase in damage probability in irregular structures compared to regular ones. The rate of increase was higher in moderate and extensive damage levels. Also, the amount of damage calculated using the two damage indices shows that the Jeong-Nensha three-dimensional damage index in these types of structures provides superior results.

Structural Seperation of Unsymmetric Highrise Apartments (비정형 고층아파트에서의 구조체 분리 간격)

  • 정하선;현창국;윤영호
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1989.04a
    • /
    • pp.56-60
    • /
    • 1989
  • It is well known that the symmetric buildings have higher resistance than the unaymetric ones do under seismic load. However, it is sometimes inevitable to build an unsymmetric structure due to the site conditions or architectural needs. The unsymmetric building has structural disadvantages under seismic load. In such a case the structural seperation joints are often used to avoid those disadvantages. This paper presents a method to determine the width of the seperation joints for unsymmetric, reinforced concrete apartments structured by walls and slabs only. The variables of the study were the ratio of shear-wall stiffness to the building length in the same directron, the building height and the story mass.

  • PDF

Comparison of Measured Natural Frequencies with Analyzed Results for the Reinforced Concrete Shear Wall (계측을 통한 벽식아파트의 동적특성 분석)

  • Cho, Ja-Ock;Kim, Ji-Young;Yu, Eun-Jong;Kim, Mi-Jin;Kim, Dae-Young
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2009.04a
    • /
    • pp.525-528
    • /
    • 2009
  • FE 해석은 구조물의 고유진동수 판단 및 거동 예측 등에 사용되며 따라서 실구조물과 동일하게 FE 해석모델을 작성할수록 실제 구조물의 고유진동수 및 거동을 정확하게 예측할 수 있다. 그러나 실 구조물과 동일하게 모델링 하는 것이 어렵기 때문에 FE 해석을 통해 예측한 구조물의 고유진동수와 실제 구조물의 고유진동수는 차이가 발생한다. FE 해석을 통한 고유진동수에 대하여 정확성을 판단할 수 있는 방법은 실제 계측을 통하여 얻은 고유진동수와 비교하는 것이다. 따라서 본 연구는 미진동하의 구조물에 대하여 계측을 실시함으로써 대상건물의 고유진동수를 파악하고, 실제 고유진동수에 대한 FE 해석의 고유진동수 비교를 통하여 FE 해석의 정확도를 판단하였다.

  • PDF

Comparison of Measured Natural Frequencies with Analyzed Results for the Reinforced Concrete Shear Wall (벽식아파트의 동적특성에 대한 실측결과와 해석결과의 비교)

  • Cho, Ja-Ock;Kim, Ji-Young;Yu, Eun-Jong;Kim, Yu-Seung;Kim, Dae-Young
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2009.04a
    • /
    • pp.521-524
    • /
    • 2009
  • 구조물의 동적특성은 FE 해석에 의해 주로 평가된다. 따라서 실제 구조물과 유사하게 모델링 될수록 구조물의 동적특성을 실제 동적특성에 보다 부합되게 예측할 수 있다. 그러나 FE model을 실제 구조물의 조건과 동일하게 작성하는 것이 어렵고 또한 모델의 정확성을 정량적으로 판단하기가 어렵다. 따라서 본 연구에서는 벽식아파트에 대하여 계측을 실시하고 실제 구조물의 동적특성을 분석하였다. 분석결과를 바탕으로 FE 해석결과와 비교함으로써 FE model의 정확성을 판단하는 한편 실 구조물과 근사하게 FE model의 보정방안을 제시하였다.

  • PDF

Construction of Engineering DataBase Management System for a Reinforced Concrete Structure (철근 콘크리트 구조 설계에서의 엔지니어링 데이타베이스 구축)

  • 이승창;김재준;이병해
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1993.10a
    • /
    • pp.163-172
    • /
    • 1993
  • This paper presents a database approach to integrating the structural analysis and design processes for a typical shear wall apartment building design. Our initial efforts have focused on extracting various graphic information from CAD(AutoCAD™) systems. But now, we concentrate our research efforts on organizing specific information generated during the structural analysis and design processes. The proposed overall system consists of a conventional structural analysis package, a conventional CAD system, and different application interface programs. This system is based on an engineering database which is developed by using an object-oriented data modelling approach. The system is actually implemented on an ORACLE™-based relational database management system.

  • PDF

Lateral Resisting Behavior of Reinforced Concrete Shear Wall and Flat Plate Column (철근콘크리트 전단벽과 무량판 기둥의 횡저항 거동)

  • Kim, Tae-Wan;Min, Chan-Gi
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2010.04a
    • /
    • pp.14-17
    • /
    • 2010
  • 본 논문에서는 국내에서 주상복합건물에 주로 건설되는 철근콘크리트 전단벽과 무량판 골조 기둥 시스템의 횡저항 거동을 조사, 분석하였다. 이 시스템의 내진설계 시 건물골조시스템을 적용하게 되는데 전단벽 설계는 큰 어려움이 없으나 골조의 경우 변형의 적합성을 고려해야 할 경우에 상세하고 명확한 지침이 마련되어 있지 않아 그 적용이 쉽지 않다. 이를 해결하기 위하여 예제 건물을 선정하여 기준에 따라 설계한 후 비선형정적 해석을 수행하여 철근콘크리트 전단벽과 무량판 골조 기둥의 비선형 거동을 조사하였다. 그 결과 무량판 골조 기둥의 거동은 전단벽에 종속되었고 변형의 적합성을 고려하기 위해 골조의 모멘트를 증폭하더라도 기둥의 단면 변화가 크지 않으므로 실무적으로 큰 어려움이 없는 것으로 나타났다. 다만 강도뿐만 아니라 변형 능력에 대해서도 추가적인 연구가 필요하다.

  • PDF

Seismic Performance of Low-rise Piloti RC Buildings with Concentric Core (중심코어를 가지는 저층 철근콘크리트 필로티 건물의 내진성능)

  • Yoon, Tae-Ho
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.4_2
    • /
    • pp.611-619
    • /
    • 2022
  • In this study, the seismic performance of low - rise piloti buildings with concentric core (shear wall) position is analysed and reviewed based on KDS 41. The prototype is selected among the constructed low - rise piloti buildings with concentric core designed based on KBC 2005 which was used for many low - rise piloti buildings construction. The seismic performance of the building shows plastic behavior in X-direction and elastic behavior in Y-direction. The inter-story drift is lager than that of concentric core case and is under the maximum allowed drift ratio. The displacement ratio of first story is much lager the that of upper stories, and the frame structure in the first story is evaluated as vulnerable to lateral force. Therefore, low - rise piloti buildings with concentric core need the diminishment of lateral displacement and reinforcement of lateral resistance capacity in seismic design and seismic retrofit.

Analytical Simulation of Shake-Table Responses of a 1:5 Scale 10-story Wall-type RC Residential Building Model (1:5 축소 10층 벽식 RC 공동주택 모델의 진동대실험 응답에 대한 해석적 모사)

  • Lee, Han-Seon;Jeong, Da-Hun;Hwang, Kyung-Ran
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.24 no.6
    • /
    • pp.617-627
    • /
    • 2011
  • This paper presents the results of analytical simulation of shake-table responses of a 1:5 scale 10-story reinforcement concrete(RC) residential building model by using the PERFORM-3D program. The following conclusion are drawn based on the observation of correlation between experiment and analysis; (1) The analytical model simulated fairly well the global elastic behavior under the excitations representative of the earthquake with the return period of 50 years. Under the design earthquake(DE) and maximum considered earthquake(MCE), this model shows the nonlinear behavior, but does not properly simulate the maximum responses, and stiffness and strength degradation in experiment. The main reason is considered to be the assumption of elastic slab. (2) Although the analytical model in the elastic behavior closely simulated the global behavior, there were considerable differences in the distribution of resistance from the wall portions. (3) Under the MCE, the shear deformation of wall was relatively well simulated with the flexural deformation being overestimated by 10 times that of experiment. This overestimation is presumed to be partially due to the neglection of coupling beams in modeling.

Plastic hinge length for coupled and hybrid-coupled shear walls

  • Abouzar Jafari;Meysam Beheshti;Amir Ali Shahmansouri;Habib Akbarzadeh Bengar
    • Steel and Composite Structures
    • /
    • v.48 no.4
    • /
    • pp.367-383
    • /
    • 2023
  • A coupled wall consists of two or more reinforced concrete (RC) shear walls (SWs) connected by RC coupling beams (CBs) or steel CBs (hybrid-coupled walls). To fill the gap in the literature on the plastic hinge length of coupled walls, including coupled and hybrid-coupled shear walls, a parametric study using experimentally validated numerical models was conducted considering the axial stress ratio (ASR) and coupling ratio (CR) as the study variables. A total of sixty numerical models, including both coupled and hybrid-coupled SWs, have been developed by varying the ASR and CR within the ranges of 0.027-0.25 and 0.2-0.5, respectively. A detailed analysis was conducted in order to estimate the ultimate drift, ultimate capacity, curvature profile, yielding height, and plastic hinge length of the models. Compared to hybrid-coupled SWs, coupled SWs possess a relatively higher capacity and curvature. Moreover, increasing the ASR changes the walls' behavior to a column-like member which decreases the walls' ultimate drift, ductility, curvature, and plastic hinge length. Increasing the CR of the coupled SWs increases the walls' capacity and the risk of abrupt shear failure but decreases the walls' ductility, ultimate drift and plastic hinge length. However, CR has a negligible effect on hybrid-coupled walls' ultimate drift and moment, curvature profile, yielding height and plastic hinge length. Lastly, using the obtained results two equations were derived as a function of CR and ASR for calculating the plastic hinge length of coupled and hybrid-coupled SWs.