• Title/Summary/Keyword: reinforced concrete panel

Search Result 183, Processing Time 0.037 seconds

Nonlinear FE Analysis of Reinforced Concrete Panels subjected to Biaxial Tensile Loads (이축인장하중을 받는 철근콘크리트 패널의 비선형 유한요소해석)

  • 이상진;이영정;전영선
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.04a
    • /
    • pp.153-160
    • /
    • 2003
  • Nonlinear finite element analysis of reinforced concrete panels subjected to biaxial tensile loads are carried out by using a 9-node assumed strain shell element. The present study mainly focuses on the performance evaluation of material models such as cracking criteria, tension stiffening model and steel model in the membrane energy dominant situation. From numerical results, the exponential form of tension stiffening model together with the use of average yield stress model for the steel embedded in the concrete performs well in the panel analysis under biaxial tensile loading condition and it produces a good agreement with experiment results. Finally, the present results are provided as a benchmark test for reinforced concrete panel structures.

  • PDF

Regarding a Shear Strengthening of an Epoxy Mortar Panel for RC Beam Without Shear Strengthening Reinforcing Bar (전단보강철근이 없는 RC보에 대한 에폭시 모르타르 패널의 전단보강에 관한 연구)

  • Lee, Sang-Ho;Cho, Min-Su;Heo, Jae-Sang
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.3
    • /
    • pp.135-146
    • /
    • 2008
  • In this study, the effect of epoxy mortar panel as the shear strengthening material of reinforced concrete beam is investigated by loading test. The main variables are the kind of strengthening material, the amount of reinforcement and the spacing of CFS(Carbon Fiber Sheet) stirrups. The design method to use epoxy mortar panel as shear strengthening of reinforced concrete beam took the shear capacity as the form of the sum of $V_c$, $V_s$, $V_{sheet}$ and $V_p$. By making a comparison between the values calculated by the proposed shear strength prediction formula and those from the loading test results, the mean value was 1.10 and the standard deviation was 8.16%.

Stress-Strain Relationship of Concrete Membrane Elements Subjected to Reversed Cyclic Loading (반복하중을 받는 콘크리트 막요소의 응력-변형률 관계)

  • Lee, Jung-Yoon
    • Journal of Korean Association for Spatial Structures
    • /
    • v.1 no.2 s.2
    • /
    • pp.93-100
    • /
    • 2001
  • A stress-strain relationship for reinforced concrete membrane elements subjected to reversed cyclic loading is quite different to that of concrete cylinder subjected to uniaxial compression. The compressive strength of cracked concrete membrane elements is reduced by cracking due to tension in the perpendicular direction. Based on the three reinforced concrete panel tests, a softened stress-strain curve of concrete subjected to reversed cyclic loading is proposed. The proposed model consists of seven stages in the compressive zones and six stages in the tensile zones. The proposed model is verified by comparing to the test results.

  • PDF

Postcracking Torsional Stiffness of Reinforced Concrete Beams under Pure Torsion (순수비틀림을 받는 철근콘크리트 보의 균열후 비틀림 강성)

  • 음성우
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1991.10a
    • /
    • pp.51-58
    • /
    • 1991
  • In staically indeterminate structures torsional stiffness is an important factor for prediction of mechanical behavior at all loading stages in reinfored concrete beams, which also for calculation of torsional moment. This paper proposes equation for postcracking torsional stiffness of reinforced concrete beams under pure torsion, which is derived considering the equilibrium and compatibility condition for shear panel based on the variable angle space truss model. The equation describes well the effect according to the variation of aspect ratio and steel volume ratio per unit concrete volume. It agress with experimental results in this paper as well as available literature.

  • PDF

Flexural Test on Composite Deck Slab Produced with Extruded ECC Panel (압출성형 ECC 패널을 이용하여 제작된 복합바닥슬래브의 휨 거동)

  • Cho, Chang-Geun;Han, Byung-Chan;Lee, Jong-Han;Kim, Yun-Yong
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.5
    • /
    • pp.695-702
    • /
    • 2010
  • This paper presents a reinforced concrete composite deck slab system newly developed using a high ductile ECC extrusion panel. In the construction practice, the cracking of reinforced concrete slab often becomes a problem especially in parking garages, underground structures, and buildings. The ECC panel manufactured by extrusion process as a precast product has not only a high-quality in control of cracking but also a merit in applying the construction of concrete slab because the use of ECC panel can realize a formless or half-precast construction with cast-in-place concrete. In the newly developed deck slab system, the ECC extrusion panel is located in the bottom of slab with the thickness of 10 mm, reinforcements are assembled and located on the ECC panel, and finally the topping concrete is placed in the field. In order to evaluate the newly developed slab system, experimental works by four point bending test are conducted to compare with the conventional reinforced concrete slab system. From experiment, the developed deck slab system using a ECC panel gives many improved performances both in control of bending cracking and in load-carrying capacities of slabs.

Evaluation of Flexural Behavior of Lightweight Precast Panel with Ultra High Performance Concrete (초고성능 콘크리트를 적용한 경량 프리캐스트 패널의 휨 거동 평가)

  • Kim, Kyoung-Chul;Koh, Kyung-Taek;An, Gi-Hong;Son, Min-Su;Kim, Byung-Suk
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.8 no.3
    • /
    • pp.269-275
    • /
    • 2020
  • In this study, flexural tests of precast concrete panels according to the thickness of cross-sectional and the with or not of reinforcement were carried out in order to develop and assess of a lightweight precast concrete panel using ultra high performance concrete. For the test, four panels were fabricated, and consisted of one normal concrete panel and three ultra high performance concrete panels. As a test result, it was found that the plain precast panel using ultra high performance concrete had a lower flexural performance than the reinforced normal concrete panel, regardless of the cross-sectional size. The flexural performance of the hollow-sectional precast panel applying ultra high performance concrete, is improved by 150% compared to that of the reinforced normal concrete panel. That is, through additional performance verification and optimization of the cross-sectional design of the panel, the ultra high performance concrete precast panel can be made lighter. Also, the practical use of lightweight precast panels with ultra high performance concrete can be available through evaluation on shear, joint connection and anchoring, etc.

A Study on Development for Joint of Concrete Filled Steel Tube Column and P.C Reinforced Concrete Beam(2) -The Behaviors Properties of Joint with Key Parameter, such as Strength of Concrete, size of Panel Zone and Axial Force ratio- (콘크리트 충전강관 기둥과 PC 철근 콘크리트 보 접합부의 개발에 관한 연구(2) -콘크리트 강도, 판넬죤의 크기, 축력비를 변수로 한 접합부의 거동 특성-)

  • Park, Jung Min;Lee, Sung Jo;Kim, Wha Jung
    • Journal of Korean Society of Steel Construction
    • /
    • v.9 no.1 s.30
    • /
    • pp.107-120
    • /
    • 1997
  • The purpose of this study is to develop composite structural system which is to have versatility in plan design and to improve economical efficieney, to maximise structural capacity than existing structural system. In this viewpoint, it was investigated to the properties of structural behaviors for i oint consisting of concrete filled steel square tube column and P.C reinforced concrete beam through a series of hysteretic behavior experiment. In the previous report, researched to the properties of joints with key parameters. such as Axial Force ratio and section types. From the based on previous results, this study investigated the properties of this joints with key parameters, such as strength of concrete, size of panel zone and Axial Force ratio. The obtained results are summarised as follows. (1) Investigating for the failure mode of the beam-to-column joint, the specimens of S,LL and LH series(except for L5H) presented flexural failure mode. (2) The initial stiffness of joint was increasd as the decrease of axial force ratio and increase of the concrete strength. (3) The rotation resisting capacity was effective as the increment of the concrete strength and decrement of the axial force ratio. (4) The emprical formula to predict the ultimate capacity of joint model to introduce decrease coefficient according to the axial force ratio to superimpose shearing strength of steel web(H section) and bending strength of reinforced concrete beam was expected.

  • PDF

Deformation Characteristics of Steel Coupling Beam-Wall Connection (철골 커플링 보-벽체 접합부의 변형 특성)

  • Park Wan-Shin;Jeon Esther;Han Min-Ki;Kim Sun-Woo;Hwang Sun-Kyung;Yun Hyun-Do
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05a
    • /
    • pp.435-438
    • /
    • 2005
  • The use of new hybrid systems that combine the advantages of steel and reinforced concrete structures has gained popularity. One of these new mixed systems consists of steel beams and reinforced concrete shear wall, which represents a cost- and time-effective type of construction. A number of previous studies have focused on examining the seismic response of steel coupling beams in a hybrid wall system. However, the shear transfer of steel coupling beam-wall connections with panel shear failure has not been thoroughly investigated. The objective of this research was to investigate the seismic performance of steel coupling beamwall connections governed by panel shear failure. To evaluate the contribution of each mechanism, depending upon connection details, an experimental study was carried out The test variables included the reinforcement details that confer a ductile behaviour on the steel coupling beam-wall connection, i.e., the face bearing plates and the horizontal ties in the panel region of steel coupling beam-wall connections. It investigates the seismic behaviour of the steel coupling beams-wall connections in terms of the deformation characteristics. The results and discussion presented in this paper provide background for a companion paper that includes a design model for calculating panel shear strength of the steel coupling beam-wall connections.

  • PDF

Elasto-plastic Analysis of Reinforced Concrete Precast Large Panel Connections by Rigid Element Method (강체요소법에 의한 철근 콘크리트 프리캐스트 대형판 접합부의 탄소성해석)

  • Park, Kang-Geun;Kim, Yong-Tae;Kwun, Taek-Jin
    • Journal of Korean Association for Spatial Structures
    • /
    • v.1 no.2 s.2
    • /
    • pp.111-116
    • /
    • 2001
  • This paper is a study on the elasto-plastic analysis of reinforced concrete precast large panel connections by rigid element spring model. In the analysis of rigid element spring model, each collapsed part or piece of structures at limiting state of loading is assumed to behave like rigid bodies. The present author propose new elements for the improement and expansion of the rigid element spring model. In this study, it is proposed how the rigid element method can be applied to the elesto-plastic analysis of precat large panel connections. Some numerical results of analytical modeling and load displacement curves are shown.

  • PDF