• 제목/요약/키워드: reinforced concrete moment frame

검색결과 158건 처리시간 0.025초

Seismic performance of lateral load resisting systems

  • Subramanian, K.;Velayutham, M.
    • Structural Engineering and Mechanics
    • /
    • 제51권3호
    • /
    • pp.487-502
    • /
    • 2014
  • In buildings structures, the flexural stiffness reduction of beams and columns due to concrete cracking plays an important role in the nonlinear load-deformation response of reinforced concrete structures under service loads. Most Seismic Design Codes do not precise effective stiffness to be used in seismic analysis for structures of reinforced concrete elements, therefore uncracked section properties are usually considered in computing structural stiffness. But, uncracked stiffness will never be fully recovered during or after seismic response. In the present study, the effect of concrete cracking on the lateral response of structure has been taken into account. Totally 120 cases of 3 Dimensional Dynamic Analysis which considers the real and accidental torsional effects are performed using ETABS to determine the effective structural system across the height, which ensures the performance and the economic dimensions that achieve the saving in concrete and steel amounts thus achieve lower cost. The result findings exhibits that the dual system was the most efficient lateral load resisting system based on deflection criterion, as they yielded the least values of lateral displacements and inter-storey drifts. The shear wall system was the most economical lateral load resisting compared to moment resisting frame and dual system but they yielded the large values of lateral displacements in top storeys. Wall systems executes tremendous stiffness at the lower levels of the building, while moment frames typically restrain considerable deformations and provide significant energy dissipation under inelastic deformations at the upper levels. Cracking found to be more impact over moment resisting frames compared to the Shear wall systems. The behavior of various lateral load resisting systems with respect to time period, mode shapes, storey drift etc. are discussed in detail.

Nonlinear dynamic analysis of RC frames using cyclic moment-curvature relation

  • Kwak, Hyo-Gyoung;Kim, Sun-Pil;Kim, Ji-Eun
    • Structural Engineering and Mechanics
    • /
    • 제17권3_4호
    • /
    • pp.357-378
    • /
    • 2004
  • Nonlinear dynamic analysis of a reinforced concrete (RC) frame under earthquake loading is performed in this paper on the basis of a hysteretic moment-curvature relation. Unlike previous analytical moment-curvature relations which take into account the flexural deformation only with the perfect-bond assumption, by introducing an equivalent flexural stiffness, the proposed relation considers the rigid-body-motion due to anchorage slip at the fixed end, which accounts for more than 50% of the total deformation. The advantage of the proposed relation, compared with both the layered section approach and the multi-component model, may be the ease of its application to a complex structure composed of many elements and on the reduction in calculation time and memory space. Describing the structural response more exactly becomes possible through the use of curved unloading and reloading branches inferred from the stress-strain relation of steel and consideration of the pinching effect caused by axial force. Finally, the applicability of the proposed model to the nonlinear dynamic analysis of RC structures is established through correlation studies between analytical and experimental results.

Reinforced concrete structures with damped seismic buckling-restrained bracing optimization using multi-objective evolutionary niching ChOA

  • Shouhua Liu;Jianfeng Li;Hamidreza Aghajanirefah;Mohammad Khishe;Abbas Khishe;Arsalan Mahmoodzadeh;Banar Fareed Ibrahim
    • Steel and Composite Structures
    • /
    • 제47권2호
    • /
    • pp.147-165
    • /
    • 2023
  • The paper contrasts conventional seismic design with a design that incorporates buckling-restrained bracing in three-dimensional reinforced concrete buildings (BRBs). The suboptimal structures may be found using the multi-objective chimp optimization algorithm (MEN-ChOA). Given the constraints and dimensions, ChOA suffers from a slow convergence rate and tends to become stuck in local minima. Therefore, the ChOA is improved by niching and evolutionary operators to overcome the aforementioned problems. In addition, a new technique is presented to compute seismic and dead loads that include all of a structure's parts in an algorithm for three-dimensional frame design rather than only using structural elements. The performance of the constructed multi-objective model is evaluated using 12 standard multi-objective benchmarks proposed in IEEE congress on evolutionary computation. Second, MEN-ChOA is employed in constructing several reinforced concrete structures by the Mexico City building code. The variety of Pareto optimum fronts of these criteria enables a thorough performance examination of the MEN-ChOA. The results also reveal that BRB frames with comparable structural performance to conventional moment-resistant reinforced concrete framed buildings are more cost-effective when reinforced concrete building height rises. Structural performance and building cost may improve by using a nature-inspired strategy based on MEN-ChOA in structural design work.

Influence of concurrent horizontal and vertical ground excitations on the collapse margins of non-ductile RC frame buildings

  • Farsangi, E. Noroozinejad;Yang, T.Y.;Tasnimi, A.A.
    • Structural Engineering and Mechanics
    • /
    • 제59권4호
    • /
    • pp.653-669
    • /
    • 2016
  • Recent earthquakes worldwide show that a significant portion of the earthquake shaking happens in the vertical direction. This phenomenon has raised significant interests to consider the vertical ground motion during the seismic design and assessment of the structures. Strong vertical ground motions can alter the axial forces in the columns, which might affect the shear capacity of reinforced concrete (RC) members. This is particularly important for non-ductile RC frames, which are very vulnerable to earthquake-induced collapse. This paper presents the detailed nonlinear dynamic analysis to quantify the collapse risk of non-ductile RC frame structures with varying heights. An array of non-ductile RC frame architype buildings located in Los Angeles, California were designed according to the 1967 uniform building code. The seismic responses of the architype buildings subjected to concurrent horizontal and vertical ground motions were analyzed. A comprehensive array of ground motions was selected from the PEER NGA-WEST2 and Iran Strong Motions Network database. Detailed nonlinear dynamic analyses were performed to quantify the collapse fragility curves and collapse margin ratios (CMRs) of the architype buildings. The results show that the vertical ground motions have significant impact on both the local and global responses of non-ductile RC moment frames. Hence, it is crucial to include the combined vertical and horizontal shaking during the seismic design and assessment of non-ductile RC moment frames.

Seismic collapse propagation in 6-story RC regular and irregular buildings

  • Karimiyan, Somayyeh;Moghadam, Abdolreza S.;Karimiyan, Morteza;Kashan, Ali Husseinzadeh
    • Earthquakes and Structures
    • /
    • 제5권6호
    • /
    • pp.753-779
    • /
    • 2013
  • One of the most important issues in progressive collapse mechanism of the buildings is evaluation of the collapse distribution in presence of the earthquake loads. Here, collapse propagation is investigated by tracking down the location and type of the collapsed beam and column elements, from the first element to the entire buildings. 6-story reinforced concrete ordinary moment resisting frame buildings with one directional mass eccentricity of 0%, 5%, 15% and 25% are studied to investigate differences among the progressive collapse mechanism of the regular and irregular buildings. According to the results of the nonlinear time history analyses, there are some patterns to predict progressive collapse scenarios in beam and column elements of the similar regular and irregular buildings. Results also show that collapse distribution patterns are approximately independent of the earthquake records.

비내진상세 철근콘크리트 구조물의 내진성능 및 중약진지역 내진설계에의 적용 (Seismic Capacity of a Reinforced Concrete Structure without Seismic Detailing and Implication to the Seismic Design in the Region of Moderate Seismicity)

  • 김익현
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 1999년도 추계 학술발표회 논문집 Proceedings of EESK Conference-Fall
    • /
    • pp.305-312
    • /
    • 1999
  • A four-story reinforced concrete frame building model is designed for the gravity loads. only Static nonlinear pushover analyses are performed in two orthogonal horizontal directions. The overall capacity curves are converted into ADRS spectra and compared with demand spectra. At several points the deformed shape moment and shear distribution are calculated. It is observed that the seismic capacity may not meet the design requirements in soft soil condition and may collapse in MCE. It is concluded that limited but adequate amount of ductility need be provided in the seismic design in low to moderate seismicity regions.

  • PDF

스트럿-타이 모델을 이용한 세장한 철근콘크리트 부재의 강도평가 (Evaluation of Shear Strength of RC Beams using Strut-and-Tie Model)

  • 박홍근;엄태성;박종철
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2005년도 추계 학술발표회 제17권2호
    • /
    • pp.271-274
    • /
    • 2005
  • Existing strut-and-tie model cannot be applied to analysis of slender beams without shear reinforcement because shear transfer mechanism is not formed. In the present study, a new strut-and-tie model with rigid joint was developed. Basically, concrete strut is modeled as a frame element which can transfer shear force (or moment) as well as axial force. Employing Rankine failure criterion, failure strength due to shear-tension and shear-compression developed in compressive concrete strut was defined. For verification, various test specimens were analyzed and the results were compared with tests. The proposed strut-and-tie model predicted shear strength and failure displacement with reasonable precision, addressing the design parameters such as shear reinforcement, concrete compressive strength, and shear span ratio.

  • PDF

FOSM 방법을 이용한 내진성능 중요부재 판별법 (Identifying Significant Components of Structures for Seismic Performance Using FOSM Method)

  • 이태형;칼리드 모살람
    • 한국지진공학회논문집
    • /
    • 제13권4호
    • /
    • pp.37-45
    • /
    • 2009
  • 구조 시스템을 구성하는 구조부재들의 상대적인 중요도를 판별하는 것은 성능기반 지진공학에서 매우 중요한 과정이다. 확률기법의 하나인 First-Order Second Moment 방법을 이용하여, 각 구조부재들의 불확실한 성능 때문에 발생하는 구조 시스템의 요구 성능의 불확실성을 예측할 수 있고, 이런 과정을 통해서 구조부재의 중요도를 판별할 수 있다. 특정한 구조부재의 불확실한 성능에 대한 구조 시스템의 요구성능이 민감할수록 그 구조부재의 중요도는 높아진다는 점을 이용하여 중요부재를 판별한다. 따라서 요구성능의 민감도가 상대적으로 큰 구조부재는 그렇지 않은 부재보다 더 중요하다고 할 수 있다. 개발된 중요부재 판별법은 연성 철근콘크리트 프레임의 중요부재를 판별하는 과정에 적용함으로써 방법을 검증하였고, 적용 가능성을 보여주었다.

Seismic design of beam-column joints in RC moment resisting frames - Review of codes

  • Uma, S.R.;Jain, Sudhir K.
    • Structural Engineering and Mechanics
    • /
    • 제23권5호
    • /
    • pp.579-597
    • /
    • 2006
  • The behaviour of reinforced concrete moment resisting frame structures in recent earthquakes all over the world has highlighted the consequences of poor performance of beam column joints. Large amount of research carried out to understand the complex mechanisms and safe behaviour of beam column joints has gone into code recommendations. This paper presents critical review of recommendations of well established codes regarding design and detailing aspects of beam column joints. The codes of practice considered are ACI 318M-02, NZS 3101: Part 1:1995 and the Eurocode 8 of EN 1998-1:2003. All three codes aim to satisfy the bond and shear requirements within the joint. It is observed that ACI 318M-02 requires smaller column depth as compared to the other two codes based on the anchorage conditions. NZS 3101:1995 and EN 1998-1:2003 consider the shear stress level to obtain the required stirrup reinforcement whereas ACI 318M-02 provides stirrup reinforcement to retain the axial load capacity of column by confinement. Significant factors influencing the design of beam-column joints are identified and the effect of their variations on design parameters is compared. The variation in the requirements of shear reinforcement is substantial among the three codes.

철근콘크리트 모멘트 골조 저층형 학교건축물의 내진성능 평가 (Seismic Performance Evaluation of Reinforced Concrete Moment Framed Low-story School buildings)

  • 황지현;박태원;한주연
    • 한국산학기술학회논문지
    • /
    • 제14권9호
    • /
    • pp.4580-4586
    • /
    • 2013
  • 대부분의 학교 건물은 내진설계기준이 적용되기 이전인 1988년 이전에 설계되었으며, 이후에 지어진 학교의 경우도 내진설계 적용대상에서 제외된 5층 이하의 건물로서 내진성능이 없을 것으로 판단된다. 건물의 특성상 많은 아이들이 밀집하여 있고, 재난 시 대피시설로 이용된다는 점에서 학교 건물의 내진성능보유는 특히 중요하다. 본 연구에서는 우리나라 학교건물의 대표적인 유형을 모델구조물로 선정하여 학교건축물에 대한 내진성능 평가를 수행하였다. 보유강도와 보유성능을 기초로 내진성능을 평가한 결과 모두 내진성능이 미흡한 것으로 나타났다.