• Title/Summary/Keyword: reinforced concrete infilled frame structure

Search Result 24, Processing Time 0.018 seconds

A Comparison Study of Equivalent Strut Models for Seismic Performance Evaluation of Masonry-Infilled Frame (조적채움벽 골조의 내진성능평가를 위한 등가 스트럿 모델의 비교연구)

  • Yu, EunJong;Kim, MinJae;Jung, DaeGye
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.18 no.2
    • /
    • pp.79-87
    • /
    • 2014
  • Masonry-infilled walls have been used in reinforced concrete(RC) frame structures as interior and exterior partition walls. Since these walls are considered as nonstructural elements, they were only considered as additional mass. However, infill walls tend to interact with the structure's overall strength, rigidity, and energy dissipation. Infill walls have been analyzed by finite element method or transposed as equivalent strut model. The equivalent strut model is a typical method to evaluate masonry-infilled structure to avoid the burden of complex finite element model. This study compares different strut models to identify their properties and applicability with regard to the characteristics of the structure and various material models.

A simplified method for estimating the fundamental period of masonry infilled reinforced concrete frames

  • Jiang, Rui;Jiang, Liqiang;Hu, Yi;Ye, Jihong;Zhou, Lingyu
    • Structural Engineering and Mechanics
    • /
    • v.74 no.6
    • /
    • pp.821-832
    • /
    • 2020
  • The fundamental period is an important parameter for seismic design and seismic risk assessment of building structures. In this paper, a simplified theoretical method to predict the fundamental period of masonry infilled reinforced concrete (RC) frame is developed based on the basic theory of engineering mechanics. The different configurations of the RC frame as well as masonry walls were taken into account in the developed method. The fundamental period of the infilled structure is calculated according to the integration of the lateral stiffness of the RC frame and masonry walls along the height. A correction coefficient is considered to control the error for the period estimation, and it is determined according to the multiple linear regression analysis. The corrected formula is verified by shaking table tests on two masonry infilled RC frame models, and the errors between the estimated and test period are 2.3% and 23.2%. Finally, a probability-based method is proposed for the corrected formula, and it allows the structural engineers to select an appropriate fundamental period with a certain safety redundancy. The proposed method can be quickly and flexibly used for prediction, and it can be hand-calculated and easily understood. Thus it would be a good choice in determining the fundamental period of RC frames infilled with masonry wall structures in engineering practice instead of the existing methods.

Fundamental period of infilled RC frame structures with vertical irregularity

  • Asteris, Panagiotis G.;Repapis, Constantinos C.;Foskolos, Filippos;Fotos, Alkis;Tsaris, Athanasios K.
    • Structural Engineering and Mechanics
    • /
    • v.61 no.5
    • /
    • pp.663-674
    • /
    • 2017
  • The determination of the fundamental period of vibration of a structure is essential to earthquake design. Current codes provide formulas for the approximate estimation of the fundamental period of earthquake-resistant building systems. These formulas are dependent only on the height of the structure or number of storeys without taking into account the presence of infill walls into the structure, despite the fact that infill walls increase the stiffness and mass of the structure leading to significant changes in the fundamental period. Furthermore, such a formulation is overly conservative and unable to account for structures with geometric irregularities. In this study, which comprises the companion paper of previous published research by the authors, the effect of the vertical geometric irregularities on the fundamental periods of masonry infilled structures has been investigated, through a large set of infilled frame structure cases. Based on these results, an attempt to quantify the reduction of the fundamental period due to the vertical geometric irregularities has been made through a proposal of properly reduction factor.

Racking shear resistance of steel frames with corner connected precast concrete infill panels

  • Hoenderkamp, J.C.D.;Snijder, H.H.;Hofmeyer, H.
    • Steel and Composite Structures
    • /
    • v.19 no.6
    • /
    • pp.1403-1419
    • /
    • 2015
  • When precast concrete infill panels are connected to steel frames at discrete locations, interaction at the structural interface is neither complete nor absent. The contribution of precast concrete infill panels to the lateral stiffness and strength of steel frames can be significant depending on the quality, quantity and location of the discrete interface connections. This paper presents preliminary experimental and finite element results of an investigation into the composite behaviour of a square steel frame with a precast concrete infill panel subject to lateral loading. The panel is connected at the corners to the ends of the top and bottom beams. The Frame-to-Panel-Connection, FPC4 between steel beam and concrete panel consists of two parts. A T-section with five achor bars welded to the top of the flange is cast in at the panel corner at a forty five degree angle. The triangularly shaped web of the T-section is reinforced against local buckling with a stiffener plate. The second part consists of a triangular gusset plate which is welded to the beam flange. Two bolts acting in shear connect the gusset plate to the web of the T-section. This way the connection can act in tension or compression. Experimental pull-out tests on individual connections allowed their load deflection characteristics to be established. A full scale experiment was performed on a one-storey one-bay 3 by 3 m infilled frame structure which was horizontally loaded at the top. With the characteristics of the frame-to-panel connections obtained from the experiments on individual connections, finite element analyses were performed on the infilled frame structures taking geometric and material non-linear behaviour of the structural components into account. The finite element model yields reasonably accurate results. This allows the model to be used for further parametric studies.

Influence of masonry infill on reinforced concrete frame structures' seismic response

  • Muratovic, Amila;Ademovic, Naida
    • Coupled systems mechanics
    • /
    • v.4 no.2
    • /
    • pp.173-189
    • /
    • 2015
  • In reality, masonry infill modifies the seismic response of reinforced concrete (r.c.) frame structures by increasing the overall rigidity of structure which results in: increasing of total seismic load value, decreasing of deformations and period of vibration, therefore masonry infill frame structures have larger capacity of absorbing and dissipating seismic energy. The aim of the paper is to explore and assess actual influence of masonry infill on seismic response of r.c. frame structures, to determine whether it's justified to disregard masonry infill influence and to determine appropriate way to consider infill influence by design. This was done by modeling different structures, bare frame structures as well as masonry infill frame structures, while varying masonry infill to r.c. frame stiffness ratio and seismic intensity. Further resistance envelope for those models were created and compared. Different structures analysis have shown that the seismic action on infilled r.c. frame structure is almost always twice as much as seismic action on the same structure with bare r.c. frames, regardless of the seismic intensity. Comparing different models resistance envelopes has shown that, in case of lower stiffness r.c. frame structure, masonry infill (both lower and higher stiffness) increased its lateral load capacity, in average, two times, but in case of higher stiffness r.c. frame structures, influence of masonry infill on lateral load capacity is insignificant. After all, it is to conclude that the optimal structure type depends on its exposure to seismic action and its masonry infill to r.c. frame stiffness ratio.

Behavior of FRP strengthened RC brick in-filled frames subjected to cyclic loading

  • Singh, Balvir;Chidambaram, R. Siva;Sharma, Shruti;Kwatra, Naveen
    • Structural Engineering and Mechanics
    • /
    • v.64 no.5
    • /
    • pp.557-566
    • /
    • 2017
  • Fiber reinforced polymer (FRP) sheets are the most efficient structural materials in terms of strength to weight ratio and its application in strengthening and retrofitting of a structure or structural elements are inevitable. The performance enhancement of structural elements without increasing the cross sectional area and flexible nature are the major advantages of FRP in retrofitting/strengthening work. This research article presents a detailed study on the inelastic response of conventional and retrofitted Reinforced Concrete (RC) frames using Carbon Fibre Reinforced Polymers (CFRP) and Glass Fiber Reinforced Polymers (GFRP) subjected to quasi-static loading. The hysteretic behaviour, stiffness degradation, energy dissipation and damage index are the parameters employed to analyse the efficacy of FRP strengthening of brick in-filled RC frames. Repair and retrofitting of brick infilled RC frame shows an improved load carrying and damage tolerance capacity than control frame.

Seismic Performance Evaluation of Hexagonal Blocks Infilled RC Frames (육각형 블록을 이용한 채움벽 RC 골조의 채움벽 내진성능평가)

  • Chang, Kug Kwan;Seo, Dae Won;Ko, Tae Hyun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.4
    • /
    • pp.116-124
    • /
    • 2011
  • RC frames with unreinforced masonry infiledl walls are common in worldwide. Since infilled walls are normally considered as non-structural elements, their presence is often ignored by engineers. In this study, to improve the seismic performance of masonry walls, hexagonal block was developed and the influence of masonry infilled wall on the seismic performance of reinforced concrete(RC) frames that were designed in accordance with current code provisions without the consideration of earthquake loadings are investigated. Two 1/2 scale, single story, single bay, frame specimens were tested. The parameters investigated included that the strength of infilled wallls with respect to that of the lateral load history. The experimental results indicate that infilled walls can significantly improve the lateral stiffness and strength of RC frames. The lateral loads developed by the infilled frame specimen is higher than that of the bare frame. It also indicates that infilled walls can be potentially used to improve the performance of existing nonductile frames. For this purpose. methods should be developed to avoid irreparable damage and catastrophic failure.

Dynamic Properties of a Lowrise Masonry-infilled RC Frame Building Before and After Seismic Retrofit (저층 조적채움벽 철근콘크리트 골조의 내진보강 전후 동특성 변화)

  • Yu, Eunjong;Kim, Min-Jae;Kim, Seung-Nam;Kim, Ji-Young;Choi, Ki-Sun
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.28 no.3
    • /
    • pp.293-300
    • /
    • 2015
  • In this study, a series of forced vibration testing and ambient vibration measurement were performed at a lowrise masonry-infilled reinforced concrete frame structure before and after seismic retrofit and its dynamic properties were extracted using system identification techniques. Also, analytical models which show similar dynamic properties to the measures ones were constructed. The system identification results showed that damping ratios in x direction along which the dampers were installed has been increased. From the comparison between the analytical models, the effective stiffness of post-installed member and post-reinforced members(shear walls and damper frames) were only 50% of gross sectional stiffness of the members, which indicates that the these members were not fully integrated with the existing structure or members. In addition, support condition of post-installed footing has to be pinned in y direction to match the dynamic properties, which is seemingly caused by the change of fixity of the soil due to the installation of new footing.

Parameters affecting the fundamental period of infilled RC frame structures

  • Asteris, Panagiotis G.;Repapis, Constantinos C.;Tsaris, Athanasios K.;Di Trapani, Fabio;Cavaleri, Liborio
    • Earthquakes and Structures
    • /
    • v.9 no.5
    • /
    • pp.999-1028
    • /
    • 2015
  • Despite the fact that the fundamental period appears to be one of the most critical parameters for the seismic design of structures according to the modal superposition method, the so far available in the literature proposals for its estimation are often conflicting with each other making their use uncertain. Furthermore, the majority of these proposals do not take into account the presence of infills walls into the structure despite the fact that infill walls increase the stiffness and mass of structure leading to significant changes in the fundamental period numerical value. Toward this end, this paper presents a detailed and indepth analytical investigation on the parameters that affect the fundamental period of reinforce concrete structure. The calculated values of the fundamental period are compared against those obtained from the seismic code and equations proposed by various researchers in the literature. From the analysis of the results it has been found that the number of storeys, the span length, the stiffness of the infill wall panels, the location of the soft storeys and the soil type are crucial parameters that influence the fundamental period of RC buildings.

Inelastic Behavior of Reinforced Concrete Frame Structure with Shear Strength of Masonry Wall (조적벽의 전단강도를 고려한 철근콘크리트골조의 비탄성 거동)

  • Yoon, Tae-Ho;Kang, Kyung-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.9
    • /
    • pp.4216-4222
    • /
    • 2011
  • In this study the inelastic behavior of the existing school buildings with infilled masonry walls is analysed by pushover method. The shear stiffness and strength of masonry wall is calculated from the prior experimets and verified by inelastic analysis. The height of infilled masonry wall affects the structural behavior. The higher the masonry wall height, the higher the initial shear stiffness and strength of masonry wall. As the cracks are developed, the strength of masonry wall is much decreased. The proposed inelastic analysis method shows similar results with the experiments and can be used as inelastic analysis model of reinforced concrete buildings with infilled masonry walls.