• Title/Summary/Keyword: reinforced concrete frame ductility

Search Result 120, Processing Time 0.026 seconds

Experimental study of masonry infill reinforced concrete frames with and without corner openings

  • Khoshnoud, Hamid Reza;Marsono, Kadir
    • Structural Engineering and Mechanics
    • /
    • v.57 no.4
    • /
    • pp.641-656
    • /
    • 2016
  • Reinforced concrete frame buildings with masonry infill walls are one of the most popular structural systems in the world. In most cases, the effects of masonry infill walls are not considered in structural models. The results of earthquakes show that infill walls have a significant effect on the seismic response of buildings. In some cases, the buildings collapsed as a result of the formation of a soft story. This study developed a simple method, called corner opening, by replacing the corner of infill walls with a very flexible material to enhance the structural behavior of walls. To evaluate the proposed method a series of experiments were conducted on masonry infill wall and reinforced concrete frames with and without corner openings. Two 1:4 scale masonry infill walls with and without corner openings were tested under diagonal tension or shear strength and two RC frames with full infill walls and with corner opening infill walls were tested under monotonic horizontal loading up to a drift level of 2.5%. The experimental results revealed that the proposed method reduced the strength of infill wall specimens but considerably enhanced the ductility of infill wall specimens in the diagonal tension test. Moreover, the corner opening in infill walls prevented the slid shear failure of the infill wall in RC frames with infill walls.

On the seismic behavior of a reinforced concrete building with masonry infills collapsed during the 2009 L'Aquila earthquake

  • Palermo, Michele;Hernandez, Ricardo Rafael;Mazzoni, Silvia;Trombetti, Tomaso
    • Earthquakes and Structures
    • /
    • v.6 no.1
    • /
    • pp.45-69
    • /
    • 2014
  • The 2009 L'Aquila, Italy earthquake shook a high density area causing a wide spectrum of damage to reinforced concrete with infill buildings, one of the most common building types used in Italy. The earthquake has proven to be a "full-scale" laboratory to further understand building performance. This paper presents the first results of a joint research effort between the University of Bologna and Degenkolb Engineers, aimed at investigating the seismic behavior of an infilled frame building that collapsed during the earthquake. State-of-the-practice techniques were implemented as a way to determine the reliability of these modeling techniques in anticipating the observed building performance. The main results indicate that: (i) the state-of-the-practice techniques are able to predict the observed behavior of the buildings; (ii) the masonry infills have a great influence on the behavior of the building in terms of stiffness, strength and global ductility.

Seismic Capacity of a Reinforced Concrete Structure without Seismic Detailing and Implication to the Seismic Design in the Region of Moderate Seismicity (비내진상세 철근콘크리트 구조물의 내진성능 및 중약진지역 내진설계에의 적용)

  • 김익현
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1999.10a
    • /
    • pp.305-312
    • /
    • 1999
  • A four-story reinforced concrete frame building model is designed for the gravity loads. only Static nonlinear pushover analyses are performed in two orthogonal horizontal directions. The overall capacity curves are converted into ADRS spectra and compared with demand spectra. At several points the deformed shape moment and shear distribution are calculated. It is observed that the seismic capacity may not meet the design requirements in soft soil condition and may collapse in MCE. It is concluded that limited but adequate amount of ductility need be provided in the seismic design in low to moderate seismicity regions.

  • PDF

Seismic assessment of mixed masonry-reinforced concrete buildings by non-linear static analyses

  • Cattari, S.;Lagomarsino, S.
    • Earthquakes and Structures
    • /
    • v.4 no.3
    • /
    • pp.241-264
    • /
    • 2013
  • Since the beginning of the twentieth century, the progressive and rapid spread of reinforced concrete (RC) has led to the adoption of mixed masonry-RC solutions, such as the confined masonry. However, together with structures conceived with a definite role for earthquake behaviour, the spreading of RC technology has caused the birth of mixed solutions inspired more by functional aspects than by structural ones, such as: internal masonry walls replaced by RC frames, RC walls inserted to build staircases or raising made from RC frames. Usually, since these interventions rise from a spontaneous build-up, any capacity design or ductility concepts are neglected being designed only to bear vertical loads: thus, the vulnerability assessment of this class becomes crucial. To investigate the non-linear seismic response of these structures, suitable models and effective numerical tools are needed. Among the various modelling approaches proposed in the literature and codes, the authors focus their attention on the equivalent frame model. After a brief description of the adopted model and its numerical validation, the authors aim to point out some specific peculiarities of the seismic response of mixed masonry-RC structures and their repercussions on safety verification procedures (referring in particular way to the non-linear static ones). In particular, the results of non-linear static analyses performed parametrically to various configurations representative of different interventions are discussed.

Response of lap splice of reinforcing bars confined by FRP wrapping: application to nonlinear analysis of RC column

  • Pimanmas, Amorn;Thai, Dam Xuan
    • Structural Engineering and Mechanics
    • /
    • v.37 no.1
    • /
    • pp.111-129
    • /
    • 2011
  • This paper presents a nonlinear analysis of reinforced concrete column with lap splice confined by FRP wrapping in the critical hinging zone. The steel stress-slip model derived from the tri-uniform bond stress model presented in the companion paper is included in the nonlinear frame analysis to simulate the response of reinforced concrete columns subjected to cyclic displacement reversals. The nonlinear modeling is based on a fiber discretization of an RC column section. Each fiber is modeled as either nonlinear concrete or steel spring, whose load-deformation characteristics are calculated from the section of fiber and material properties. The steel spring that models the reinforcing bars consists of three sub-springs, i.e., steel bar sub-spring, lap splice spring, and anchorage bond-slip spring connected in series from top to bottom. By combining the steel stress versus slip of the lap splice, the stress-deformation of steel bar and the steel stress-slip of bars anchored into the footing, the nonlinear steel spring model is derived. The analytical responses are found to be close to experimental ones. The analysis without lap splice springs included may result in an erroneous overestimation in the strength and ductility of columns.

Seismic Performance of Non-ductile Reinforced Concrete Frames with Precast ECC Wall Panels (프리캐스트 ECC 벽판으로 보강된 비내진 상세를 갖는 철근콘크리트 골조의 내진성능)

  • Kim, Ji-Hyeon;Jo, Seong-Pill;Seo, Soo-Yeon;Yun, Hyun-Do
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.6
    • /
    • pp.105-112
    • /
    • 2019
  • This study was conducted to examine experimentally the seismic performance of non-ductile reinforced concrete (RC) frames retrofitted with precast(PC) engineered cementitious composite (ECC) wall panels. The seismic performance was investigated through cyclic load tests on RC frame with different aspect ratio (hw/lw = 2 and 3) and installation position (center and both side of RC frame) of the PC ECC wall panels. Test results indicated that the seismic strengthening method using PC ECC wall panels is effective to improve significantly the strength, stiffness and energy dissipation capacity of non-ductile RC frame. Based on test results, it can be recommended to install PC ECC wall panel at the center of RC frame for improving the strength and to install slender wall panels at both side of RC frame for increasing ductility.

Structural Performance Evaluation of Reinforced Concrete Frame and Shear Wall with Various Hoop Ratios of Boundary Column (철근콘크리트 프레임 및 전단벽체의 경계기둥 띠철근비 변화에 따른 구조성능 평가)

  • 신종학;하기주;전찬목
    • Magazine of the Korea Concrete Institute
    • /
    • v.10 no.6
    • /
    • pp.303-311
    • /
    • 1998
  • Ten reinforced concrete rigid frames and infilled shear wall frames were tested under both vertical and cyclic loadings. Experiments were carried out to evaluate the structural performance of such test specimens, such as the hysteretic behavior, the maximum horizontal strength, crack propagation, and ductility etc. under load reversals. All the specimens were modeledin one-third scale size. Based on the test results reported in this study, the follwing conclusions can be made. For the rigid frame type and the fully rigid babel type shear wall specimens, the hysteresis diagrams indicate that the degradations of their strength were developed slowly beyond maximum carrying capacity. It was shown that when the hoop reinforcement ratio became higher, the energy dissipation capacity became larger and the failure mode became ductile. The specimens designed by the less hoop reinforcement for the fully rigid babel type shear wall, were mainly failed due to diagonal crack in comparison with the specimens designed by the larger hoop reinforcement ratio. Maximum horizontal resisting moment capacity of speciment designed by the fully rigid babel shear wall were increased by 5.47~7.95 times in comparison with the rigid frame type.

Seismic Behavior of RC Beam-Column Exterior Joints with Unbonded Tendons and High Strength Concrete (비부착 강연선과 고강도 콘크리트를 적용한 철근콘크리트 외부 접합부의 내진 거동)

  • Kwon, Byung Un;Kang, Thomas H.-K.
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.19 no.6
    • /
    • pp.283-292
    • /
    • 2015
  • In the moment frame subjected to earthquake loads, beam-column joint is structurally important for ductile behavior of a system. ACI Committee 352 proposed guidelines for designing beam-column joint details. The guidelines, however, need to be updated because of the lack of data regarding several factors that may improve the performance of joints. The purpose of this study is to investigate the seismic performance of reinforced concrete exterior joints with high-strength materials and unbonded tendons. Three specimens with different joint shear demand-to-strength ratios were constructed and tested, where headed bars were used to anchor the beam bars into the joint. All specimens showed satisfactory seismic behavior including moment strength of 1.3 times the nominal moment, ductile performance (ductility factor = at least 2.4), and sufficiently large dissipated energy.

Seismic Performance of Reinforced Concrete Frame with Masonry Waist-high Wall using Aramid Fiber (아라미드 섬유를 이용한 철근콘크리트 프레임 면내 조적 허리벽의 내진보강성능)

  • Kim, Hye-Jin;Cho, Seung-Ho;Rho, Kwang-Geun;Lee, Sang-Hyun;Chung, Lan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.99-100
    • /
    • 2009
  • In this paper, wish to achieve an experimental study to investigate enhanced performance of the masonry walls strengthened in shear and ductility using Aramid fiber strip.

  • PDF

Seismic Rehabilitation of Nonductile Reidorced Concrete Gravity Frame (비연성 철근 콘크리트 중력 프레임에 의한 지진 보강)

  • Dong Choon Choi;Javeed A. Munsh;Kwang W. Kim
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.43 no.5
    • /
    • pp.116-123
    • /
    • 2001
  • This paper represents results of an effort to seismically rehabilitate a 12-story nonductile reinforced concrete frame building. The frame located in the most severe seismic area, zone 4, is assumed to be designed and detailed for gravity load requirements only. Both pushover and nonlinear time-history analyses are carried out to determine strength, deformation capacity and the vulnerability of the building. The analysis indicates a drift concentration at the $1^{st}$ floor level due to inadequate strength and ductility capacity of the ground floor columns. The capacity curve of the structure, when superimposed on the average demand response spectrum for the ensemble of scaled earthquakes indicates that the structure is extremely weak and requires a major retrofit. The retrofit of the building is attempted using viscoelastic (VE) dampers. The dampers at each floor level are sized in order to reduce the elastic story drift ratios to within 1%. It is found that this requires substantially large dampers that are not practically feasible. With practical size dampers, the analyses of the viscoelastically damped building indicates that the damper sizes provided are not sufficient enough to remove the biased response and drift concentration of the building. The results indicate that VE-dampers alone are not sufficient to rehabilitate such a concrete frame. Concrete buildings, in general, being stiffer require larger dampers. The second rehabilitation strategy uses concrete shearwalls. Shearwalls increased stiffness and strength of the building, which resulted in reducing the drift significantly. The effectiveness of VE-dampers in conjunction with stiff shearwalls was also studied. Considering the economy and effectiveness, it is concluded that shearwalls were the most feasible solution for seismic rehabilitation of such buildings.

  • PDF