• 제목/요약/키워드: reinforced concrete corbel

검색결과 14건 처리시간 0.019초

Analysis of reinforced concrete corbel beams using Strut and Tie models

  • Parol, Jafarali;Al-Qazweeni, Jamal;Salam, Safaa Abdul
    • Computers and Concrete
    • /
    • 제21권1호
    • /
    • pp.95-102
    • /
    • 2018
  • Reinforced concrete corbel beams (span to depth ratio of a corbel is less than one) are designed with primary reinforcement bars to account for bending moment and with the secondary reinforcement placed parallel to the primary reinforcement (shear stirrups) to resist shear force. It is interesting to note that most of the available analytical procedures employ empirical formulas for the analysis of reinforced concrete corbels. In the present work, a generalized and a simple strut and tie models were employed for the analysis of reinforced corbel beams. The models were benchmarked against experimental results available in the literature. It was shown here that increase of shear stirrups increases the load carrying capacity of reinforced concrete corbel beams. The effect of horizontal load on the load carrying capacity of the corbel beams has also been examined in the present paper. It is observed from the strut and tie models that the resistance of the corbel beam subjected to combined horizontal and vertical load did not change with increase in shear stirrups if the failure of the corbel is limited by concrete crushing. In other words, the load carrying capacity was independent of the horizontal load when failure of the beam occurred due to concrete crushing.

Behavior of reinforced concrete corbels

  • Lu, Wen-Yao;Lin, Ing-Jaung
    • Structural Engineering and Mechanics
    • /
    • 제33권3호
    • /
    • pp.357-371
    • /
    • 2009
  • Test results of thirteen reinforced concrete corbels with shear span-to-depth ratio greater than unity are reported. The main variables studied were compressive strength of concrete, shear span-to-depth ratio and parameter of vertical stirrups. The test results indicate that the shear strengths of corbels increase with an increase in compressive strength of concrete and parameter of vertical stirrups. The shear strengths of corbels also increase with a decrease in shear span-to-depth ratio. The smaller the shear span-to-depth ratio of corbel, the larger the stiffness and the shear strength of corbel are. The higher the concrete strength of corbel, the higher the stiffness and the shear strength of corbel are. The larger the parameter of vertical stirrups, the larger the stiffness and the shear strength of corbel are. The softened strut-and-tie model for determining the shear strengths of reinforced concrete corbels is modified appropriately in this paper. The shear strengths predicted by the proposed model and the approach of ACI Code are compared with available test results. The comparison shows that the proposed model can predict more accurately the shear strengths of reinforced concrete corbels than the approach of ACI Code.

Stochastic finite element based reliability analysis of steel fiber reinforced concrete (SFRC) corbels

  • Gulsan, Mehmet Eren;Cevik, Abdulkadir;Kurtoglu, Ahmet Emin
    • Computers and Concrete
    • /
    • 제15권2호
    • /
    • pp.279-304
    • /
    • 2015
  • In this study, reliability analyses of steel fiber reinforced concrete (SFRC) corbels based on stochastic finite element were performed for the first time in literature. Prior to stochastic finite element analysis, an experimental database of 84 sfrc corbels was gathered from literature. These sfrc corbels were modeled by a special finite element program. Results of experimental studies and finite element analysis were compared and found to be very close to each other. Furthermore experimental crack patterns of corbel were compared with finite element crack patterns and were observed to be quite similar. After verification of the finite element models, stochastic finite element analyses were implemented by a specialized finite element module. As a result of stochastic finite element analysis, appropriate probability distribution functions (PDF's) were proposed. Finally, coefficient of variation, bias and strength reduction (resistance) factors were proposed for sfrc corbels as a consequence of stochastic based reliability analysis.

철근콘크리트 코오벨 부재의 구조성능 평가 및 내력 추정 (Evaluation of Structural Performance on Corbel in the Reinforced Concrete)

  • 조승호;박태원;우성식;정란;박현수;김동백
    • 한국안전학회지
    • /
    • 제23권3호
    • /
    • pp.58-64
    • /
    • 2008
  • In order to identify the exact behavior of corbel section, the horizontal force acting on corbel section should be considered as well as the vertical force. In this study, a new corbel section, which is economical and easy to construct, is developed by evaluating the exact strength of the section. Experiments were performed to verify the strengths of the proposed sections comparing with those of the currently used section. The summary of the experiment results are as follows: 1) In order to minimize the horizontal force effect, it was found that the use of pre-stressing was most effective, and that TB type corbel section is a most efficient section in terms of economy and workability. 2) The experimentally obtained strength of corbel section matched well with that estimated using shear friction theory. Therefore, it is concluded that shear friction theory would be very useful if a precise crack angie in the corbel section, which is pre-stressed by PS strings and threaded bolts, is available.

Reinforcement detailing of a corbel via an integrated strut-and-tie modeling approach

  • Ozkal, Fatih Mehmet;Uysal, Habib
    • Computers and Concrete
    • /
    • 제19권5호
    • /
    • pp.589-597
    • /
    • 2017
  • Strut-and-tie modeling method, which evolved on truss-model approach, has generally been preferred for the design of complex reinforced concrete structures and structural elements that have critical shear behavior. Some structural members having disturbed regions require exceptional detailing for all support and loading conditions, such as the beam-column connections, deep beams, short columns or corbels. Considering the general expectation of exhibiting brittle behavior, corbels are somewhat dissimilar to other shear critical structures. In this study, reinforcement layout of a corbel model was determined by the participation of structural optimization and strut-and-tie modeling methods, and an experimental comparison was performed against a conventionally designed model.

철근콘크리트 코벨 스트럿-타이 모델의 스트럿 유효강도 (Effective Strengths of Concrete Struts in Strut-Tie Models of Reinforced Concrete Corbels)

  • 채현수;윤영묵
    • 대한토목학회논문집
    • /
    • 제34권4호
    • /
    • pp.1081-1094
    • /
    • 2014
  • 스트럿-타이 모델 방법은 철근콘크리트 코벨의 극한강도 해석 및 설계에 매우 효과적이다. 그러나 스트럿-타이 모델 방법을 이용한 철근콘크리트 코벨의 정확한 해석 및 안전한 설계를 위해서는 스트럿의 유효강도를 정확하게 결정하여야 한다. 이 연구에서는 여러 연구문헌에서 제안된 철근콘크리트 코벨의 대표적인 세 종류의 스트럿-타이 모델을 활용하기 위하여 철근콘크리트 코벨의 기하학적 형상, 수직 및 수평 하중의 조합 비, 그리고 휨철근 및 수평전단철근 비 등 주요 설계변수들의 영향을 정확하게 반영할 수 있는 스트럿 유효강도 식을 개발, 제안하였다. 현행 여러 설계기준서의 스트럿 유효강도 식과 이 연구에서 제안한 유효강도 식을 이용하여 파괴실험이 수행된 243개 철근콘크리트 코벨의 극한강도를 평가하였으며, 그 결과의 비교분석을 통해 이 연구에서 제안한 스트럿 유효강도 식의 적합성을 평가하였다.

Reinforced concrete corbels strengthened with carbon fiber reinforced plastics

  • Lu, Wen-Yao;Yu, Hsin-Wan;Chen, Chun-Liang;Yang, Tzong-Hwan;Lin, Yu-Sin
    • Computers and Concrete
    • /
    • 제10권3호
    • /
    • pp.259-276
    • /
    • 2012
  • A total of nine reinforced concrete corbels were tested, in this study. Six were externally strengthened with carbon fiber reinforced plastics (CFRP), in the horizontal direction. The cross-sectional area of CFRP and the shear span-to-effective depth ratios are the parameters considered, in this study. Test results indicate that the higher the cross-sectional area of CFRP, the higher is the shear strength of the corbels, and the lower the shear span-to-effective depth ratios, the higher is the shear strength of corbels. The shear strength predicted by the design provisions in section 11.8 of the ACI Code, the strut-and-tie model in Appendix A of the ACI Code, and the softened strut-and-tie (SST) model were compared with the test results. The comparisons show that both the strut-and-tie model in Appendix A of the ACI Code, and the SST model can accurately predict the shear strength of reinforced concrete corbels, strengthened with CFRP.

Fiber reinforced concrete corbels: Modeling shear strength via symbolic regression

  • Kurtoglu, Ahmet E;Gulsan, Mehmet E;Abdi, Hussein A;Kamil, Mohammed A;Cevik, Abdulkadir
    • Computers and Concrete
    • /
    • 제20권1호
    • /
    • pp.65-75
    • /
    • 2017
  • In this study, a novel application of symbolic regression (SR) is employed for the prediction of ultimate shear strength of steel fiber reinforced (SFRC) and glass fiber reinforced (GFRC) corbels without stirrups, for the first time in the literature. A database is created using the test results (42 tests) conducted by the authors of current paper as well as the previous studies available in the literature. A symbolic regression based empirical formulation is proposed using this database. The formulation is unique in a way that it has the capability to predict the shear strength of both SFRC and GFRC corbels. The performance of proposed model is tested against randomly selected testing set. Additionally, a parametric study with a wide range of variables is carried out to test the effect of each parameter on the shear strength. The results confirm the high prediction capacity of proposed model.

철근콘크리트 코벨의 부정정 스트럿-타이 모델 및 하중분배율 (An Indeterminate Strut-Tie Model and Load Distribution Ratio for Reinforced Concrete Corbels)

  • 채현수;윤영묵
    • 대한토목학회논문집
    • /
    • 제34권4호
    • /
    • pp.1065-1079
    • /
    • 2014
  • 철근콘크리트 코벨의 파괴거동은 코벨의 전단경간비 및 주인장 철근비를 포함한 여러 변수들로 인해 복잡하다. 이 논문에서는 철근콘크리트 코벨의 강도 및 거동 특성을 논리적이고 합리적인 방법으로 반영하여 전단경간비가 1.0 이하인 철근콘크리트 코벨을 설계할 수 있는 단순한 형태의 1차 부정정 트러스 구조의 스트럿-타이 모델을 제안하였다. 또한 부정정 스트럿-타이 모델을 정정 트러스 구조의 스트럿-타이 모델로 변환시켜 현행 스트럿-타이 모델 설계기준에 의한 코벨의 설계를 가능하게 하는 하중분배율을 제안하였다. 하중분배율 결정 시 스트럿과 타이의 재료적 비선형 거동을 고려할 수 있는 부정정 스트럿-타이 모델의 비탄성 구조해석을 통해 철근콘크리트 코벨의 강도 및 거동을 지배하는 전단경간비, 주인장 철근비, 수직하중에 대한 수평하중의 비, 그리고 콘크리트의 압축강도 등의 주요설계변수들의 영향을 반영하였다. 이 연구에서 제안한 부정정 스트럿-타이 모델 및 하중분배율의 적합성을 검증하기 위해 파괴실험이 수행된 다수의 철근콘크리트 코벨의 극한강도를 평가하였으며, 그 결과를 ACI 318-11의 전통적인 설계기준 및 정정 트러스 구조의 스트럿-타이 모델을 기반으로 하는 현행 주요 설계기준의 스트럿-타이모델 방법에 의한 평가결과와 비교분석하였다.

Strength assessment of RC deep beams and corbels

  • Adrija, D.;Geevar, Indu;Menon, Devdas;Prasad, Meher
    • Structural Engineering and Mechanics
    • /
    • 제77권2호
    • /
    • pp.273-291
    • /
    • 2021
  • The strut-and-tie method (STM) has been widely accepted and used as a rational approach for the design of disturbed regions ('D' regions) of reinforced concrete members such as in corbels and deep beams, where traditional flexure theory does not apply. This paper evaluates the applicability of the equilibrium based STM in strength predictions of deep beams (with rectangular and circular cross-section) and corbels using the available experiments in literature. STM is found to give fairly good results for corbel and deep beams. The failure modes of these deep members are also studied, and an optimum amount of distribution reinforcement is suggested to eliminate the premature diagonal splitting failure. A comparison with existing empirical and semi empirical methods also show that STM gives more reliable results. The nonlinear finite element analysis (NLFEA) of 50 deep beams and 20 corbels could capture the complete behaviour of deep members including crack pattern, failure load and failure load accurately.