DOI QR코드

DOI QR Code

Effective Strengths of Concrete Struts in Strut-Tie Models of Reinforced Concrete Corbels

철근콘크리트 코벨 스트럿-타이 모델의 스트럿 유효강도

  • 채현수 (경북대학교 건축토목공학부) ;
  • 윤영묵 (경북대학교 건축토목공학부)
  • Received : 2013.05.19
  • Accepted : 2013.12.10
  • Published : 2014.08.01

Abstract

The strut-tie model approach has proven to be effective in the ultimate analysis and design of structural concrete with disturbed regions. For the reliable analysis and safe design of the structural concrete, however, the effective strengths of concrete struts must be determined accurately. In this study, the equations of the effective strengths of concrete struts, which are useful for the three types of determinate and indeterminate strut-tie models of reinforced concrete corbels, were proposed. The effects of shear span-to-effective depth ratio, the vertical-to-horizontal force ratio, and flexural and horizontal shear reinforcement ratios were reflected in the development of the proposed equations. To examine the appropriateness of the proposed and existing equations, the ultimate strengths of 243 reinforced concrete corbels tested to failure were evaluated by using the three types of corbel strut-tie models.

스트럿-타이 모델 방법은 철근콘크리트 코벨의 극한강도 해석 및 설계에 매우 효과적이다. 그러나 스트럿-타이 모델 방법을 이용한 철근콘크리트 코벨의 정확한 해석 및 안전한 설계를 위해서는 스트럿의 유효강도를 정확하게 결정하여야 한다. 이 연구에서는 여러 연구문헌에서 제안된 철근콘크리트 코벨의 대표적인 세 종류의 스트럿-타이 모델을 활용하기 위하여 철근콘크리트 코벨의 기하학적 형상, 수직 및 수평 하중의 조합 비, 그리고 휨철근 및 수평전단철근 비 등 주요 설계변수들의 영향을 정확하게 반영할 수 있는 스트럿 유효강도 식을 개발, 제안하였다. 현행 여러 설계기준서의 스트럿 유효강도 식과 이 연구에서 제안한 유효강도 식을 이용하여 파괴실험이 수행된 243개 철근콘크리트 코벨의 극한강도를 평가하였으며, 그 결과의 비교분석을 통해 이 연구에서 제안한 스트럿 유효강도 식의 적합성을 평가하였다.

Keywords

References

  1. ACI Subcommittee 445 (2002). Examples for the design of structural concrete with strut-and-tie models; SP-208, American Concrete Institute, Farmington Hills, Michigan, USA.
  2. American Concrete Institute (2011). Building code requirements for structural concrete (ACI 318M-11) and commentary, Farmington Hills, Michigan, USA.
  3. American Association of State Highway and Transportation Officials (2010). AASHTO LRFD bridge design specifications, 5 th Edition, Washington, D.C., USA.
  4. Alshegeir, A. (1992). Analysis and design of disturbed regions with strut-tie models, Ph.D Dissertation, School of Civil Engineering, Purdue University, Indiana, USA.
  5. Bergmeister, K., Breen, J. E., Jirsa, J. O. and Kreger, M. E. (1993). Detailing in structural concrete, Research Report 1127-3F, University of Texas at Austin, Texas, USA.
  6. Canadian Standards Association (2004). Design of concrete structures for buildings, A23.3-M04, Rexdale, Ontario, Canada.
  7. Chae, H. S. (2012). Indeterminate strut-tie models for reinforced concrete deep beams and corbels, Ph.D Dissertation, Kyungpook National University, Daegu, Korea, p. 290 (in Korean).
  8. Collins, M. P. and Mitchell, D. (2001). Prestressed concrete structures, 3 rd Edition, Prentice Hall, Englewood Cliffs, New Jersey, p. 766.
  9. Comite Euro-International du Beton (2010). CEP-FIP model code 2010, International Federation for Structural Concrete (fib), Lausanne, Switzerland.
  10. European Committee for Standardization (2004). Eurocode 2: Design of concrete structures, Brussels, Belgium.
  11. Foster, S. J., Powell, R. E. and Selim, H. S. (1996). "Performance of high-strength concrete corbels."ACI Structural Journal, Vol. 93, No. 5, pp. 555-563.
  12. Hwang, S. J., Lu, W. Y. and Lee, H. J. (2000). "Shear strength prediction for reinforced concrete corbels."ACI Structural Journal, Vol. 97, No. 4, pp. 543-552.
  13. Korean Concrete Institute (2012). Design specifications for structural concretes, Kimoondang, Seoul, South Korea, p. 342 (in Korean).
  14. Korean Concrete Institute (2013). Examples of strut-tie model design of structural concretes, Kimoondang, Seoul, South Korea, p. 259 (in Korean).
  15. Kriz, L. B. and Raths, C. H. (1965). "Connections in precast concrete structures - Strength of corbels."PCI Journal, Vol. 10, No. 1, pp. 16-61. https://doi.org/10.15554/pcij.02011965.16.61
  16. MacGregor, J. G. (1997). Reinforced concrete - Mechanics and Design, 3 rd Edition, Prentice Hall, Englewood Cliffs, New Jersey, USA.
  17. Marti, P. (1985). "Basic tools of reinforced concrete beam design." Journal of American Concrete Institute, Vol. 82, No. 1, pp. 46-56.
  18. Mattock, A. H., Chen, K. C. and Soongswang, K. (1976). "The behavior of reinforced concrete corbels."PCI Journal, Vol. 21, No. 2, pp. 52-77. https://doi.org/10.15554/pcij.03011976.52.77
  19. Nielsen, M. P., Braestrup, M. W., Jensen, B. C. and Bach, F. (1978). Concrete plasticity, beam shear - shear in joints - punching shear, Special Publication, Danish Society for Structural Science and Engineering, Lyngby, Denmark.
  20. Ramirez, J. A. and Breen, J. E. (1983). Proposed design procedure for shear and torsion in reinforced and prestressed concrete, Research Report 248-4F, Center for Transportation Research, University of Texas at Austin, Texas, USA.
  21. Schlaich, J., Schaefer, K. and Jennewein, M. (1987). "Towards a consistent design of structural concrete."Journal of the Prestressed Concrete Institute, Vol. 32, No. 3, pp. 74-151.
  22. Thurlimann, B. (1976). "Shear strength of reinforced and prestressed concrete - CEB Approach."Special Publication 59-6, American Concrete Institute, Detroit, USA.
  23. Vecchio, F. J. and Collins, M. P. (1982). The response of reinforced concrete to in-plane shear and normal stresses, Publication No. 82-03, Department of Civil Engineering, University of Toronto, Canada.
  24. Yang, K. H., Lee, Y. H., Eun, H. C. and Chung, H. S. (2003). "An evaluation of effective strength factor of strut in strut-tie modeling of reinforced concrete deep beams without shear reinforcement." Journal of Architectural Institute of Korea, Vol. 19, No. 1, pp. 21-28 (in Korean).
  25. Yun, Y. M. (2005). "Effective strength of concrete strut in strut-tie model (I): Methods for Determining Effective Strength of Concrete Strut."Journal of the Korean Society of Civil Engineers, Vol. 25, No. 1A, pp. 49-59 (in Korean).
  26. Yun, Y. M. and Ramirez, J. A. (1994). "Strut-tie model design of disturbed regions in concrete structure."ASCE Structural Congress XII, Atlanta, Georgia, USA.