• Title/Summary/Keyword: reinforced concrete column-steel beam

Search Result 223, Processing Time 0.02 seconds

Behaviors of concrete filled square steel tubes confined by carbon fiber sheets (CFS) under compression and cyclic loads

  • Park, Jai Woo;Hong, Young Kyun;Choi, Sung Mo
    • Steel and Composite Structures
    • /
    • v.10 no.2
    • /
    • pp.187-205
    • /
    • 2010
  • The existing CFT columns present the deterioration in confining effect after the yield of steel tube, local buckling and the deterioration in load capacity. If lateral load such as earthquake load is applied to CFT columns, strong shearing force and moment are generated at the lower part of the columns and local buckling appears at the column. In this study, axial compression test and beam-column test were conducted for existing CFT square column specimens and those reinforced with carbon fiber sheets (CFS). The variables for axial compression test were width-thickness ratio and the number of CFS layers and those for beamcolumn test were concrete strength and the number of CFS layers. The results of the compression test showed that local buckling was delayed and maximum load capacity improved slightly as the number of layers increased. The specimens' ductility capacity improved due to the additional confinement by carbon fiber sheets which delayed local buckling. In the beam-column test, maximum load capacity improved slightly as the number of CFS layers increased. However, ductility capacity improved greatly as the increased number of CFS layers delayed the local buckling at the lower part of the columns. It was observed that the CFT structure reinforced with carbon fiber sheets controlled the local buckling at columns and thus improved seismic performance. Consequently, it was deduced that the confinement of CFT columns by carbon fiber sheets suggested in this study would be widely used for reinforcing CFT columns.

Retrofitting of exterior RC beam-column joints using ferrocement jackets

  • Bansal, Prem Pal;Kumar, Maneek;Dar, Manzoor Ahmed
    • Earthquakes and Structures
    • /
    • v.10 no.2
    • /
    • pp.313-328
    • /
    • 2016
  • Beam-column joints are recognized as one of the most critical and vulnerable zones of a Reinforced Concrete (RC) moment resisting structure subjected to seismic loads. The performance of the deficient beam-column joints can be improved by retrofitting these joints by jacketing them with varied materials like concrete, steel, FRP and ferrocement. In the present study strength behavior of RCC exterior beam-column joints, initially loaded to a prefixed percentage of the ultimate load, and retrofitted using ferrocement jacketing using two different wrapping schemes has been studied and presented. In retrofitting scheme, RS-I, wire mesh is provided in L shape at top and at bottom of the beam-column joint, whereas, in scheme RS-II along with wire mesh in L shape at top and bottom wire mesh is also provided diagonally to the joint. The results of these retrofitted beam-column joints have been compared with those of the controlled joint specimens. The results show an improvement in the ultimate load carrying capacity and yield load of the retrofitted specimens. However, no improvement in the ductility and energy absorption has been observed.

An Experimental Study on the Structural Behavior of Strengthened Reinforced Concrete Columns (보강된 철근콘크리트 기둥의 구조거동에 관한 실험적 연구)

  • 이승엽;정성원;황규표;장성재;음성우;이수곤
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.10a
    • /
    • pp.665-672
    • /
    • 1997
  • In this paper, sixteen column specimens were tested under the concentrated and excentric load condition to examine the structural behavior of strengthened columns. 16 column specimens were divided into four groups. One group is not strengthened, the other three groups are strengthened by the materials : 1) steel plate, 2) carbon fiber sheet, and 3) glass fiber sheet, each group is composed of four specimens. As a result, strengthened columns have larger bearing capacity and energy absorption after ultimate load than unstrengthened columns. The column group strengthened with steel plate has the best bearing capacity among the strengthened column groups. Also, the columns strengthened with the carbon fiber sheet are similar to glass fiber sheet in bearing capacity. If necessary to strengthen columns in trouble, car should be taken to treat the joint between beam and column because of crack propagation in tension side.

  • PDF

Structural Behavior of the RC Column-Steel Beam Joint with Band Plate (Band Plate로 연결된 RC기둥-철골보 접합부의 이력거동에 관한 실험연구)

  • Seo, S.Y.;Yi, W.H.;Lee, L.H.;Yoon, S.J.
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.6 no.1
    • /
    • pp.213-221
    • /
    • 2002
  • This paper presents the experimental result of Reinforced Concrete column-steel beam joint connected by Band Plates(BP). Main parameters in the test are the shape of BP and thickness of plate. Ten interior and exterior RC column-steel beam joint specimens are designed. Cyclic loads are applied to the beam end of eight specimens (four interior specimens and four exterior specimens). To evaluate the cyclic effect, monotonic loads are acted for two specimens. All specimen showed similar failure pattern such as the plate of BP get torn after the large deformation. Even though the specimen with double cross type BP has lower strength than the specimen with single cross type BP, the energy dissipation capacity of the specimen turned out high. Thus, provided the strength of joint with double cross type to be designed to have suitable strength by increasing the thickness of plate, the joint system may show higher seismic capacity.

Field Measurement and Compensation Method of Column Shortening for SRC Columns in 37-story Residential Building (37층 초고층주상복합건물 SRC기둥의 기둥축소량 현장계측 및 보정법)

  • Song, Hwa-Cheol;Do,e Guen-Young;Cho, Hun-hee
    • Journal of the Korea Institute of Building Construction
    • /
    • v.5 no.4 s.18
    • /
    • pp.145-152
    • /
    • 2005
  • Long-term axial shortening of the vertical elements of tail buildings results in differential movements between two elements and may lead to the additional moments of connection beam and slab elements, and other secondary effects, such as cracks of partitions or curtain walls. Accurate prediction of time-dependent column shortening is essential for tall buildings from both strength and serviceability aspects. The compensation method is different from reinforced concrete and SRC(Steel Reinforced Concrete) members. The SRC columns are usually compensated according to total differential shortening between two vertical elements. In this study, column shortenings of 37-story W building under construction are predicted and compensated. The SRC column shortenings are compared with the actual column shortening by field measurement and the column shortenings are reanalysed and recompensated.

Seismic Response of Exterior RC Column-to-Steel Beam Connections (I. Experiment) (콘크리트 기둥-강재 보 외부 접합부의 내진성능(I. 실험))

  • 조순호
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2000.04a
    • /
    • pp.275-282
    • /
    • 2000
  • The seismic behavior of moment connections consisting of reinforced concrete columns and steel beams is investigated based on four 2/3 scale tests of exterior beam-column joints subject to reversed cyclic loading. The major test parameters were the number of hoops the isolated concrete contribution and the use of headed studs in the joint regions between columns and beams. Their influence on the seismic response of the connections is presented and compared. Among them the CF3 specimen containing two hoops each in the joint and column regions above and below exhibited the most favourable hysteretic response. This indicates that this type of joint details can be used in the low seismic areas such as Korea.

  • PDF

Evaluation of Bearing Strength for Composite Joint (합성접합부에서 지압내력 평가식)

  • 김병국;최완철
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.10a
    • /
    • pp.347-352
    • /
    • 2002
  • Recent trends in the construction of building frame feature the increase use of composite steel concrete members functioning together in what terms of mixed structural systems. One of such systems, RCS(reinforced concrete column and steel beam) system is introduced and closely examined focusing on bearing strength of the composite joint in this paper. The main objective of this study was to develope one of details to increase bearing capacity while bearing failure is one of the two primary modes of failure in RCS system. Local bearing tests with specimens about 1/3 of the actual concrete column size were performed applying uniform load through steel plate with 100$\times$110mm size. Test results show that specimens with the bearing reinforcement detail developed in this study enhanced the bearing strength by 1.71~3.02 compared to concrete cylinder strength.

  • PDF

Buckling of concrete columns retrofitted with Nano-Fiber Reinforced Polymer (NFRP)

  • Bilouei, Babak Safari;Kolahchi, Reza;Bidgoli, Mahmood Rabani
    • Computers and Concrete
    • /
    • v.18 no.5
    • /
    • pp.1053-1063
    • /
    • 2016
  • As concrete is most usable material in construction industry it's been required to improve its quality. Nowadays, nanotechnology offers the possibility of great advances in construction. For the first time, the nonlinear buckling of straight concrete columns armed with single-walled carbon nanotubes (SWCNTs) resting on foundation is investigated in the present study. The column is modelled with Euler-Bernoulli beam theory. The characteristics of the equivalent composite being determined using the Mori-Tanaka model. The foundation around the column is simulated with spring and shear layer. Employing nonlinear strains-displacements, energy methods and Hamilton's principal, the governing equations are derived. Differential quadrature method (DQM) is used in order to obtain the buckling load of structure. The influences of volume percent of SWCNTs, geometrical parameters, elastic foundation and boundary conditions on the buckling of column are investigated. Numerical results indicate that reinforcing the concrete column with SWCNTs, the structure becomes stiffer and the buckling load increases with respect to concrete column armed with steel.

Cyclic Test for RC Frame with Infilled Steel Plate (강판채움벽을 갖는 RC 골조에 대한 반복가력 실험)

  • Choi, In Rak;Park, Hong Gun
    • Journal of Korean Society of Steel Construction
    • /
    • v.21 no.2
    • /
    • pp.115-125
    • /
    • 2009
  • An experimental study was performed to investigate the cyclic behavior of the reinforced concrete frame with infilled steel plate. For this purpose, three-story compositewalls using infilled steel plates (RCSPW) were tested. The parameters for this test were the reinforcement ratio of the column and opening in the infilled steel plate. A reinforced concrete infilled wall (RCIW) and a reinforced concrete frame (RCF) were also tested for comparison. The deformation capacity of the RCSPW specimen was significantly greater than that of the RCIW specimen, although the two specimens exhibited the same load-carrying capacity. Like the steel plate walls with the steel boundary frame, RCSPW specimens showed excellent strength, deformation capacity, and energy dissipation capacity. Furthermore, by using infilled steel plates, shear cracking and failure of the column-beam joint were prevented. By using a strip model, the stiffness and strength of the RCSPW specimens were predicted. The results were compared with the test results.

Residual behavior of SRRAC beam and column after exposure to high temperatures

  • Zhou, Ji;Chen, Zongping;Zhou, Chunheng;Zheng, Wei;Ye, Peihuan
    • Steel and Composite Structures
    • /
    • v.45 no.3
    • /
    • pp.369-388
    • /
    • 2022
  • Composite effect between steel and recycled aggregate concrete (RAC) in steel reinforced-RAC (SRRAC) structures can effectively improve RAC's adverse mechanical properties due to the natural defects of recycled coarse aggregate (RCA). However, the performance of SRRAC after thermal exposure will have a great impact on the safety of the structure. In this paper, firstly, the mechanical properties of SRRAC structures after high temperatures exposure were tested, including 24 SRRAC columns and 32 SRRAC beams. Then, the change rules of beams and columns performance with the maximum temperature and replacement percentage were compared. Finally, the formulas to evaluate the residual bearing capacity of SRRAC beams and columns after exposure to high temperatures were established. The experimental results show that the maximum exposure temperature can be judged by the apparent phenomenon and mass loss ratio of RAC. After high temperatures exposure, the mechanical properties of SRRAC beams and columns change significantly, where the degradation of bearing capacity and stiffness is the most obvious. Moreover, it is found that the degradation degree of compression member is more serious than that of flexural member. The formulas of residual bearing capacity established by introducing influence coefficient of material strength agree well with the experimental results.