• Title/Summary/Keyword: reinforced concrete bridge columns

Search Result 151, Processing Time 0.022 seconds

Seismic Performance Assessment of Hollow Reinforced Concrete and Prestressed Concrete Bridge Columns

  • Kim, Tae-Hoon;Seong, Dai-Jeong;Shin, Hyun Mock
    • International Journal of Concrete Structures and Materials
    • /
    • v.6 no.3
    • /
    • pp.165-176
    • /
    • 2012
  • The aim of this study is to assess the seismic performance of hollow reinforced concrete and prestressed concrete bridge columns, and to provide data for developing improved seismic design criteria. By using a sophisticated nonlinear finite element analysis program, the accuracy and objectivity of the assessment process can be enhanced. A computer program, RCAHEST (Reinforced Concrete Analysis in Higher Evaluation System Technology), is used to analyze reinforced concrete and prestressed concrete structures. Tensile, compressive and shear models of cracked concrete and models of reinforcing and prestressing steel were used to account for the material nonlinearity of reinforced concrete and prestressed concrete. The smeared crack approach was incorporated. The proposed numerical method for the seismic performance assessment of hollow reinforced concrete and prestressed concrete bridge columns is verified by comparing it with the reliable experimental results. Additionally, the studies and discussions presented in this investigation provide an insight into the key behavioral aspects of hollow reinforced concrete and prestressed concrete bridge columns.

Performance Assessment of Deteriorated Reinforced Concrete Bridge Columns (열화된 철근콘크리트 교각의 성능평가)

  • Kim, Tae-Hoon
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.15 no.5
    • /
    • pp.45-54
    • /
    • 2011
  • This paper presents a nonlinear finite element analysis procedure for the performance assessment of deteriorated reinforced concrete bridge columns. A computer program, named RCAHEST (Reinforced Concrete Analysis in Higher Evaluation System Technology), was used to analyze these reinforced concrete structures. Material nonlinearity is taken into account by comprising tensile, compressive and shear models of cracked concrete and a model of reinforcing steel. Advanced deteriorated material models are developed to predict behaviors of deteriorated reinforced concrete bridge columns. The proposed numerical method for the performance of damaged reinforced concrete bridge columns is verified by comparison with reliable experimental results.

Seismic Performance Assessment of Reinforced Concrete Bridge Columns using Nonlinear Finite Element Analysis (비선형 유한요소해석을 이용한 철근콘크리트 교각의 내진성능평가)

  • Kim, Tae-Hoon;Shin, Hyun-Mock
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.10 no.3 s.49
    • /
    • pp.21-33
    • /
    • 2006
  • The purpose of this study is to assess the seismic performance of reinforced concrete bridge columns using nonlinear finite element analysis. The accuracy and objectivity of the assessment process may be enhanced by the use of sophisticated nonlinear finite element analysis program. A computer program, named RCAHEST (Reinforced Concrete Analysis in Higher Evaluation System Technology), for the analysis of reinforced concrete structures was used. Damage index aims to provide a means of quantifying numerically the damage in reinforced concrete bridge columns sustained under earthquake loading. The proposed numerical method for the seismic performance assessment of reinforced concrete bridge columns is verified by comparison with reliable experimental results.

Inelastic seismic analysis of RC bridge piers including flexure-shear-axial interaction

  • Lee, Do Hyung;Elnashai, Amr S.
    • Structural Engineering and Mechanics
    • /
    • v.13 no.3
    • /
    • pp.241-260
    • /
    • 2002
  • The effect of shear coupled with axial force variation on the inelastic seismic behaviour of reinforced concrete bridge piers is investigated in this paper. For this purpose, a hysteretic axial-shear interaction model was developed and implemented in a nonlinear finite element analysis program. Thus, flexure-shear-axial interaction is simulated under variable amplitude reversed actions. Comparative studies for shear-dominated reinforced concrete columns indicated that a conventional FE model based on flexure-axial interaction only gave wholly inadequate results and was therefore incapable of predicting the behaviour of such members. Analysis of a reinforced concrete bridge damaged during the Northridge (California 1994) earthquake demonstrated the importance of shear modelling. The contribution of shear deformation to total displacement was considerable, leading to increased ductility demand. Moreover, the effect of shear with axial force variation can significantly affect strength, stiffness and energy dissipation capacity of reinforced concrete members. It is concluded that flexure-shear-axial interaction should be taken into account in assessing the behaviour of reinforced concrete bridge columns, especially in the presence of high vertical ground motion.

Seismic Performance Evaluation of Reinforced Concrete Columns Under Constant and Varying Axial Forces (일정 및 변동 축력을 받는 철근콘크리트 기둥의 내진성능 평가)

  • Lee, Do Hyung
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.28 no.1
    • /
    • pp.59-65
    • /
    • 2024
  • This paper describes the seismic performance evaluation of reinforced concrete bridge columns under constant and varying axial forces. For this purpose, nine identical circular reinforced concrete columns were designed seismically by KIBSE (2021) and KCI (2021). A comparison of lateral forces with theoretical strength shows that the safety factor for columns under varying axial forces is less marginal than those under constant axial forces. In addition, columns under varying axial forces exhibit significant fluctuations in the hysteretic response due to continuously varying axial forces. This is particularly prominent when many varying axial force cycles within a specific lateral loading cycle increase. Moreover, the displacement ductility of columns under varying axial forces does not meet the code-specified required ductility in the range of varying axial forces. All varying axial forces affect columns' strength, stiffness, and displacement ductility. Therefore, axial force variation needs to be considered in the lateral strength evaluation of reinforced concrete bridge columns.

Predictions of Seismic Behavior of Reinforced Concrete Bridge Columns

  • Kim Tae-Hoon;Kim Woon-Hak;Lee Kwang-Myong;Shin Hyun-Mock
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.3 s.81
    • /
    • pp.441-450
    • /
    • 2004
  • The objectives of this study are to investigate the seismic behavior of reinforced concrete bridge columns and to provide the data for developing improved seismic design criteria. The accuracy and objectivity of the assessment process can be enhanced by the use of sophisticated nonlinear finite element analysis program. A computer program, named RCAHEST (Reinforced Concrete Analysis in Higher Evaluation System Technology), for the analysis of reinforced concrete structures was used. Material nonlinearity is taken into account by comprising tensile, compressive and shear models of cracked concrete and a model of reinforcing steel. The low-cycle fatigue damage of both concrete and reinforcing bars has been also considered in order to predict a reliable seismic behavior. The proposed numerical method for the prediction of seismic behavior of reinforced concrete bridge columns is verified by comparison with the reliable experimental results.

Seismic Performance Assessment of Reinforced Concrete Bridge Columns with Interlocking Circular Hoops (결합원형띠철근을 갖는 철근콘크리트 교각의 내진성능평가)

  • Kim, Tae-Hoon;Park, Kwang-Soon;Kang, Hyeong-Taek
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.15 no.6
    • /
    • pp.81-90
    • /
    • 2011
  • The purpose of this study was to investigate the seismic performance of reinforced concrete bridge columns with interlocking circular hoops. Three interlocking columns were tested under a constant axial load and a quasistatic, cyclically reversed horizontal load. A computer program, RCAHEST (Reinforced Concrete Analysis in Higher Evaluation System Technology) was used for the analysis of reinforced concrete structures. The used numerical method gives a realistic prediction of performance throughout the loading cycles for several test specimens investigated. Based on the experimental and analytical results, design recommendations are presented to improve the existing practice in the design and construction of reinforced concrete bridge columns with interlocking circular hoops.

Seismic Performance Assessment of RC Bridge Columns using Inelastic Finite Element Analysis (비탄성 유한요소해석을 이용한 철근콘크리트 교각의 내진성능평가)

  • Kim, Tae-Hoon;Chung, Young-Soo;Shin, Hyun-Mock
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.9 no.5 s.45
    • /
    • pp.63-74
    • /
    • 2005
  • The purpose of this study is to assess the seismic performance of reinforced concrete bridge columns using inelastic finite element analysis. The accuracy and objectivity of the assessment process may be enhanced by the use of sophisticated nonlinear finite element analysis program. A computer program, named RCAHEST (Reinforced Concrete Analysis in Higher Evaluation System Technology), for the analysis of reinforced concrete structures was used. Damage index aims to provide a means of quantifying numerically the damage in reinforced concrete bridge columns sustained under earthquake loading. The proposed numerical method for the seismic performance assessment of reinforced concrete bridge columns is verified by comparison with reliable experimental results.

Analytical Study on the Inelastic Behavior of Hollow Reinforced Concrete Bridge Columns under Varying Axial Load (변동 축하중을 받는 중공 철근콘크리트 교각의 비탄성거동에 관한 해석적 연구)

  • Kim, Tae-Hoon;Shin, Hyun-Mock
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.10 no.4 s.50
    • /
    • pp.35-44
    • /
    • 2006
  • The purpose of this study is to investigate the inelastic behavior of hollow reinforced concrete bridge columns under varying axial load. The role of the variable axial load is very important in the ductility, strength, stiffness, and energy dissipation. A computer program, named RCAHEST (Reinforced Concrete Analysis in Higher Evaluation System Technology), for the analysis of reinforced concrete structures was used. Material nonlinearity is taken into account by comprising tensile, compressive and shear models of cracked concrete and a model of reinforcing steel. The proposed numerical method for the inelastic behavior of hollow reinforced concrete bridge columns under varying axial load is verified by comparison with reliable experimental results.

Seismic interaction of flexural ductility and shear capacity in reinforced concrete columns

  • Howser, Rachel;Laskar, A.;Mo, Y.L.
    • Structural Engineering and Mechanics
    • /
    • v.35 no.5
    • /
    • pp.593-616
    • /
    • 2010
  • The seismic performance of reinforced concrete (RC) bridge columns is a significant issue because the interaction of flexural ductility and shear capacity of such columns with varied amounts of lateral reinforcement is not well established. Several relationships between flexural ductility and shear capacity have been proposed by various researchers in the past. In this paper, a parametric study on RC bridge columns is conducted using a nonlinear finite element program, "Simulation of Concrete Structures (SCS)", developed at the University of Houston. SCS has been previously used to predict the seismic behavior of such columns. The predicted results were compared with the test results obtained from experiments available in literature. Based on the results of the parametric study performed in this paper, a set of new relationships between flexural ductility and shear capacity of RC columns is proposed for seismic design.