• 제목/요약/키워드: reinforced bars

검색결과 735건 처리시간 0.033초

반복하중시 철근의 마디형태에 따른 부착특성 (Bond Performance of Steel to Concrete subjected to Cyclic Loading)

  • 이재열;이웅세;최완철
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2000년도 봄 학술발표회 논문집
    • /
    • pp.545-550
    • /
    • 2000
  • Bond between reinforcing bars and the surrounding concrete is supposed to safely transfer load in the design process of reinforced concrete structures. Bar with high relative rib area will be studied further not only static load but also dynamic loading conditions to sustain better performance of bond for reinforced concrete structures under earthquake. To determine the bond behavior of high ribbed bars in beam and column joints under repeated loads, 31 pullout specimens were tested. Bond strength increases as relative rib area increases. Also the effect of relative rib area on bond is larger in cyclic loading than in monotonic loading.

  • PDF

Assessment of reliability-based FRP reinforcement ratio for concrete structures with recycled coarse aggregate

  • Ju, Minkwan;Park, Kyoungsoo;Lee, Kihong;Ahn, Ki Yong;Sim, Jongsung
    • Structural Engineering and Mechanics
    • /
    • 제69권4호
    • /
    • pp.399-405
    • /
    • 2019
  • The present study assessed the reliability-based reinforcement ratio of FRP reinforced concrete structure applying recycled coarse aggregate (RCA) concrete. The statistical characteristics of FRP bars and RCA concrete were investigated from the previous literatures and the mean value and standard deviation were employed for the reliability analysis. The statistics can be regarded as the material uncertainty for configuring the probability distribution model. The target bridge structure is the railway bridge with double T-beam section. The replacement ratios of RCA were 0%, 30%, 50%, and 100%. From the probability distribution analysis, the reliability-based reinforcement ratios of FRP bars were assessed with four cases according to the replacement ratio of RCA. The reinforcement ratio of FRP bars at RCA 100% showed about 17.3% higher than the RCA 0%, where the compressive strength at RCA 100% decreased up to 27.5% than RCA 0%. It was found that the decreased effect of the compressive strength of RCA concrete could be compensated with increase of the reinforcement ratio of FRP bars. This relationship obtained by the reliability analysis can be utilized as a useful information in structural design for FRP bar reinforced concrete structures applying RCA concrete.

Bond strength prediction of spliced GFRP bars in concrete beams using soft computing methods

  • Shahri, Saeed Farahi;Mousavi, Seyed Roohollah
    • Computers and Concrete
    • /
    • 제27권4호
    • /
    • pp.305-317
    • /
    • 2021
  • The bond between the concrete and bar is a main factor affecting the performance of the reinforced concrete (RC) members, and since the steel corrosion reduces the bond strength, studying the bond behavior of concrete and GFRP bars is quite necessary. In this research, a database including 112 concrete beam test specimens reinforced with spliced GFRP bars in the splitting failure mode has been collected and used to estimate the concrete-GFRP bar bond strength. This paper aims to accurately estimate the bond strength of spliced GFRP bars in concrete beams by applying three soft computing models including multivariate adaptive regression spline (MARS), Kriging, and M5 model tree. Since the selection of regularization parameters greatly affects the fitting of MARS, Kriging, and M5 models, the regularization parameters have been so optimized as to maximize the training data convergence coefficient. Three hybrid model coupling soft computing methods and genetic algorithm is proposed to automatically perform the trial and error process for finding appropriate modeling regularization parameters. Results have shown that proposed models have significantly increased the prediction accuracy compared to previous models. The proposed MARS, Kriging, and M5 models have improved the convergence coefficient by about 65, 63 and 49%, respectively, compared to the best previous model.

Design for shear strength of concrete beams longitudinally reinforced with GFRP bars

  • Thomas, Job;Ramadassa, S.
    • Structural Engineering and Mechanics
    • /
    • 제53권1호
    • /
    • pp.41-55
    • /
    • 2015
  • In this paper, a model for the evaluation of shear strength of fibre reinforced polymer (FRP)-reinforced concrete beams is given. The survey of literature indicates that the FRP reinforced beams tested with shear span to depth ratio less than or equal to 1.0 is limited. In this study, eight concrete beams reinforced with GFRP rebars without stirrups are cast and tested over shear span to depth ratio of 0.5 and 1.75. The concrete compressive strength is varied from 40.6 to 65.3 MPa. The longitudinal reinforcement ratio is varied from 1.16 to 1.75. The experimental shear strength and load-deflection response of the beams are determined and reported in this paper. A model is proposed for the prediction of shear strength of beams reinforced with FRP bars. The proposed model accounts for compressive strength of concrete, modulus of FRP rebar, longitudinal reinforcement ratio, shear span to depth ratio and size effect of beams. The shear strength of FRP reinforced concrete beams predicted using the proposed model is found to be in better agreement with the corresponding test data when compared with the shear strength predicted using the eleven models published in the literature. Design example of FRP reinforced concrete beam is also given in the appendix.

Seismic performances of RC columns reinforced with screw ribbed reinforcements connected by mechanical splice

  • Lee, Se-Jung;Lee, Deuck Hang;Kim, Kang Su;Oh, Jae-Yuel;Park, Min-Kook;Yang, Il-Seung
    • Computers and Concrete
    • /
    • 제12권2호
    • /
    • pp.131-149
    • /
    • 2013
  • Various types of reinforcement splicing methods have been developed and implemented in reinforced concrete construction projects for achieving the continuity of reinforcements. Due to the complicated reinforcement arrangements and the difficulties in securing bar spacing, the traditional lap splicing method, which has been widely used in reinforced concrete constructions, often shows low constructability and difficulties in quality control. Also, lap spliced regions are likely to be over-reinforced, which may not be desirable in seismic design. On the other hand, mechanical splicing methods can offer simple and clear arrangements of reinforcement. In order to utilize the couplers for the ribbed-deformed bars, however, additional screw processing at the ends of reinforcing bars is typically required, which often lead to performance degradations of reinforced concrete members due to the lack of workmanship in screw processing or in adjusting the length of reinforcing bars. On the contrary, the use of screw-ribbed reinforcements can easily solve these issues on the mechanical splicing methods, because it does not require the screw process on the bar. In this study, the mechanical coupler suitable for the screw-ribbed reinforcements has been developed, in which any gap between the reinforcements and sleeve device can be removed by grouting high-flow inorganic mortar. This study presents the uniaxial tension tests on the screw-ribbed reinforcement with the mechanical sleeve devices and the cyclic loading tests on RC columns with the developed coupler. The test results show that the mechanical sleeve connection developed in this study has an excellent splicing performance, and that it is applicable to reinforced concrete columns with a proper confinement by hoop reinforcement.

GFRP 보강 내염성 콘크리트 보의 해양구조부재로서의 적용성 검토 (Study of Application of Salt Resistance Concrete Beam Reinforced with Glass Fiber Reinforced Polymer-Ribbed Bar as a Member of Marine Structure)

  • 김충호;황윤희
    • 한국해양공학회지
    • /
    • 제22권5호
    • /
    • pp.94-99
    • /
    • 2008
  • Three types of salt resistant concrete beams reinforced with glass fiber reinforced polymer-ribbed bars (GFRP-ribbed bars) were selected, and their applicable properties were investigated with the goal of improving the problem of capacity deterioration in marine structures due to sea water corrosion. In this study, the structural behaviors were similar to RC beams in relation to the development of the strength and stiffness up to the generation of the initial crack. After the growth of this initial crack, the structural properties decreased owing to a sudden loss of bond strength. Also these beams showed the trends of brittle failure. As a result, it was confirmed that a GFS beam replaced with Fly Ash (20%) and Silica Fume (5%) has the best application as a marine structural element.

CFS로 횡보강된 철근콘크리트 기둥의 역학적 특성에 관한 연구 (A Study on Mechanical Characteristics of Reinforced Concrete Columns Confined with Carbon Fiber Sheet)

  • 권영웅;정성철
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1999년도 봄 학술발표회 논문집(I)
    • /
    • pp.743-749
    • /
    • 1999
  • Recently new rehabilitation techniques have been proposed with advanced composite materials like carbon fiber, aramid, glass fiber sheet and so forth. The purpose of this paper is to investigate the mechanical characteristics of reinforced concrete columns confined with carbon fiber sheet and evaluate the degree of their strengthening effect. For the test, the specimen size of column is 15cm$\times$15cm$\times$90cm reinforced with 4 number of main bars of 10 mm diameter, tied bars of 6 mm diameter and slenderness ratio 20. Columns were wrapped with carbon fiber sheet along the column length. It is necessary to make some assumption regarding the confinement of carbon fiber sheet to apply to reinforced concrete columns under concentric loads. The strength gain effect of columns confined with carbon fiber sheet could be predicted using the proposed equation.

  • PDF

Effect of Surface Condition and Corrosion-Induced Defect on Guided Wave Propagation in Reinforced Concrete

  • 나원배
    • 한국해양공학회지
    • /
    • 제20권6호
    • /
    • pp.1-6
    • /
    • 2006
  • Corrosion of reinforcing steel bars is a major concern for ocean engineers when reinforced concrete structures are exposed to marine environments. Evaluating the degree of corrosion and corrosion-induced defects is extremely necessary to pursue a proper retrofit or rehabilitation plan for reinforced concrete structures. A promising inspection should be carried out for the evaluation, otherwise the retrofit or rehabilitation process would be useless. Nowadays, ultrasonic guided wave-based inspection techniques become quite promising for the inspection, mainly because of their long-range propagation capability and their sensitivity to different types of defects or conditions. Evaluating haw the guided waves response to the different types of defects or conditions is quite challenging and important. This study shows how surface conditions of reinforcing bars and a corrosion-induced defect, separation, affect guided wave propagation in reinforced concrete. Experiments and associated signal analysis show the sensitivity of guided waves to the surface conditions, as well as the amounts of separation at the interface between. concrete and steel bar.

단면 증설된 보-기둥 부재의 구조성능에 관한 실험적 연구 (An Experimental Studies on Structural Behavior of Reinforced Concrete Beam-Columns with Enlarged Cross Sections)

  • 신영수;홍기섭;최완철;박주현
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제1권2호
    • /
    • pp.141-149
    • /
    • 1997
  • The major objects of this study is to investigate experimentally the strengthening effects and post-failure behavior of reinforced concrete beam-columns with enlarged sections. Tests are carried out to evaluate the influences of axial load intensities, thickness of encased steel plates and reinforcing bars in the grouted parts on the structural behavior of the specimens. The test results show that the amount of reinforcing bars and thickness of steel plate significantly affect on the structural behavior. The ultimate moment capacities of reinforced concrete beam-columns encased with 2mm-thick steel plate are significantly increased to about 10 times of those of unstrengthened specimens.

  • PDF

Performance of headed FRP bar reinforced concrete Beam-Column Joint

  • Md. Muslim Ansari;Ajay Chourasia
    • Structural Engineering and Mechanics
    • /
    • 제90권1호
    • /
    • pp.71-81
    • /
    • 2024
  • Fiber Reinforced Polymer (FRP) bars have now been widely adopted as an alternative to traditional steel reinforcements in infrastructure and civil industries worldwide due variety of merits. This paper presents a numerical methodology to investigate FRP bar-reinforced beam-column joint behavior under quasi-static loading. The proposed numerical model is validated with test results considering load-deflection behavior, damage pattern at beam-column joint, and strain variation in reinforcements, wherein the results are in agreement. The numerical model is subsequently employed for parametric investigation to enhance the end-span beam-column joint performance using different joint reinforcement systems. To reduce the manufacturing issue of bend in the FRP bar, the headed FRP bar is employed in a beam-column joint, and performance was investigated at different column axial loads. Headed bar-reinforced beam-column joints show better performance as compared to beam-column joints having an L-bar in terms of concrete damage, load-carrying capacity, and joint shear strength. The applicability and efficiency of FRP bars at different story heights have also been investigated with varying column axial loads.