• Title/Summary/Keyword: regulation on metabolites

Search Result 73, Processing Time 0.029 seconds

RELATIONSHIP BETWEEN SOME CIRCULATING HORMONES, METABOLITES AND MILK YIELD IN LACTATING CROSSBRED COWS AND BUFFALOES

  • Jindal, S.K.;Ludri, R.S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.7 no.2
    • /
    • pp.239-248
    • /
    • 1994
  • To study the relationship between certain hormones and metabolites and between hormones and milk yield during different stage of lactation, six lactating Karan Swiss cows and six Murrah buffaloes were maintained. Growth hormone, insulin, $T_3$, $T_4$, glucose, BHBA, NEFA and milk yield were studied. Highly negative relationship of growth hormone with insulin and triiodothyronine in cows and marginally negative in buffaloes suggest that insulin and triiodothyronine aid in the process of partitioning of nutrients towards milk production through reducing the demands of nutrients by peripheral tissue. The significant and negative correlation of growth hormone with dry matter intake in both the species suggest that the availability of nutrients from the digestive tract play a role in the regulation of growth hormone secretion. Positive relationship of growth hormone with non esterified fatty acids in both the species suggest that high growth hormone levels may result in fat mobilization and thereby increase the availability of energy precursors for milk synthesis. Insulin was negatively correlated with milk yield and lactose content and positively with milk fat and protein but the degree of relationship varied. In both the species the relationship between triiodothyronine and milk yield was negative and between thyroxine and milk yield was positive. However, it was significant only in cows and not in buffaloes. Thyroxine was positively correlated with beta-hydroxybutyrate and non-esterified fatty acids with milk yield in both the species.

Gut Microbial Metabolites Induce Changes in Circadian Oscillation of Clock Gene Expression in the Mouse Embryonic Fibroblasts

  • Ku, Kyojin;Park, Inah;Kim, Doyeon;Kim, Jeongah;Jang, Sangwon;Choi, Mijung;Choe, Han Kyoung;Kim, Kyungjin
    • Molecules and Cells
    • /
    • v.43 no.3
    • /
    • pp.276-285
    • /
    • 2020
  • Circadian rhythm is an endogenous oscillation of about 24-h period in many physiological processes and behaviors. This daily oscillation is maintained by the molecular clock machinery with transcriptional-translational feedback loops mediated by clock genes including Period2 (Per2) and Bmal1. Recently, it was revealed that gut microbiome exerts a significant impact on the circadian physiology and behavior of its host; however, the mechanism through which it regulates the molecular clock has remained elusive. 3-(4-hydroxyphenyl)propionic acid (4-OH-PPA) and 3-phenylpropionic acid (PPA) are major metabolites exclusively produced by Clostridium sporogenes and may function as unique chemical messengers communicating with its host. In the present study, we examined if two C. sporogenes-derived metabolites can modulate the oscillation of mammalian molecular clock. Interestingly, 4-OH-PPA and PPA increased the amplitude of both PER2 and Bmal1 oscillation in a dose-dependent manner following their administration immediately after the nadir or the peak of their rhythm. The phase of PER2 oscillation responded differently depending on the mode of administration of the metabolites. In addition, using an organotypic slice culture ex vivo, treatment with 4-OH-PPA increased the amplitude and lengthened the period of PER2 oscillation in the suprachiasmatic nucleus and other tissues. In summary, two C. sporogenes-derived metabolites are involved in the regulation of circadian oscillation of Per2 and Bmal1 clock genes in the host's peripheral and central clock machineries.

Heterotrimeric G protein signaling and RGSs in Aspergillus nidulans

  • Yu Jae-Hyuk
    • Journal of Microbiology
    • /
    • v.44 no.2
    • /
    • pp.145-154
    • /
    • 2006
  • Heterotrimeric G proteins (G proteins) are conserved in all eukaryotes and are crucial components sensing and relaying external cues into the cells to elicit appropriate physiological and biochemical responses. Basic units of the heterotrimeric G protein signaling system include a G protein-coupled receptor (GPCR), a G protein composed of ${\alpha},\;{\beta},\;and\;{\gamma}$ subunits, and variety of effectors. Sequential sensitization and activation of these G protein elements translates external signals into gene expression changes, resulting in appropriate cellular behaviors. Regulators of G protein signaling (RGSs) constitute a crucial element of appropriate control of the intensity and duration of G protein signaling. For the past decade, G protein signaling and its regulation have been intensively studied in a number of model and/or pathogenic fungi and outcomes of the studies provided better understanding on the upstream regulation of vegetative growth, mating, development, virulence/pathogenicity establishment, and biosynthesis of secondary metabolites in fungi. This review focuses on the characteristics of the basic upstream G protein components and RGS proteins, and their roles controlling various aspects of biological processes in the model filamentous ascomycete fungus Aspergillus nidulans. In particular, their functions in controlling hyphal proliferation, asexual spore formation, sexual fruiting, and the mycotoxin sterigmatocystin production are discussed.

Combined Non-Thermal Microbial Inactivation Techniques to Enhance the Effectiveness of Starter Cultures for Kimchi Fermentation

  • Su-Ji Kim;Sanghyun Ha;Yun-Mi Dang;Ji Yoon Chang;So Yeong Mun;Ji-Hyoung Ha
    • Journal of Microbiology and Biotechnology
    • /
    • v.34 no.3
    • /
    • pp.622-633
    • /
    • 2024
  • For quality standardization, the application of functional lactic acid bacteria (LAB) as starter cultures for food fermentation is a well-known method in the fermented food industry. This study assessed the effect of adding a non-thermally microbial inactivated starter culture to kimchi, a traditional Korean food, in standardizing its quality. In this study, pretreatment based on sterilization processes, namely, slightly acidic electrolyzed water (SAEW) disinfection and ultraviolet C light-emitting diode (UVC-LED) of raw and subsidiary kimchi materials were used to reduce the initial microorganisms in them, thereby increasing the efficiency and value of the kimchi LAB starter during fermentation. Pretreatment sterilization effectively suppressed microorganisms that threatened the sanitary value and quality of kimchi. In addition, pretreatment based on sterilization effectively reduced the number of initial microbial colonies in kimchi, creating an environment in which kimchi LAB starters could settle or dominate, compared to non-sterilized kimchi. These differences in the initial microbial composition following the sterilization process and the addition of kimchi LAB starters led to differences in the metabolites that positively affect the taste and flavor of kimchi. The combined processing technology used in our study, that is, pre-sterilization and LAB addition, may be a powerful approach for kimchi quality standardization.

Vitamin A Improves Hyperglycemia and Glucose-Intolerance through Regulation of Intracellular Signaling Pathways and Glycogen Synthesis in WNIN/GR-Ob Obese Rat Model.

  • Jeyakumar, Shanmugam M.;Sheril, Alex;Vajreswari, Ayyalasomayajula
    • Preventive Nutrition and Food Science
    • /
    • v.22 no.3
    • /
    • pp.172-183
    • /
    • 2017
  • Vitamin A and its metabolites modulate insulin resistance and regulate stearoyl-CoA desaturase 1 (SCD1), which are also known to affect insulin resistance. Here, we tested, whether vitamin A-mediated changes in insulin resistance markers are associated with SCD1 regulation or not. For this purpose, 30-week old male lean and glucose-intolerant obese rats of WNIN/GR-Ob strain were given either a stock or vitamin A-enriched diet, i.e. 2.6 mg or 129 mg vitamin A/kg diet, for 14 weeks. Compared to the stock diet, vitamin A-enriched diet feeding improved hyperglycemia and glucose-clearance rate in obese rats and no such changes were seen in lean rats receiving identical diets. These changes were corroborated with concomitant increase in circulatory insulin and glycogen levels of liver and muscle (whose insulin signaling pathway genes were up-regulated) in obese rats. Further, the observed increase in muscle glycogen content in these obese rats could be explained by increased levels of the active form of glycogen synthase, the key regulator of glycogen synthesis pathway, possibly inactivated through increased phosphorylation of its upstream inhibitor, glycogen synthase kinase. However, the unaltered hepatic SCD1 protein expression (despite decreased mRNA level) and increased muscle-SCD1 expression (both at gene and protein levels) suggest that vitamin A-mediated changes on glucose metabolism are not associated with SCD1 regulation. Chronic consumption of vitamin A-enriched diet improved hyperglycemia and glucose-intolerance, possibly, through the regulation of intracellular signaling and glycogen synthesis pathways of muscle and liver, but not associated with SCD1.

In vivo anti-metastatic action of Ginseng Saponins is based on their intestinal bacterial metabolites after oral administration

  • Saiki, Ikuo
    • Journal of Ginseng Research
    • /
    • v.31 no.1
    • /
    • pp.1-13
    • /
    • 2007
  • We found that the main bacterial metabolite M1 is an active component of orally administered protopanxadiol-type ginsenosides, and that the anti-metastatic effect by oral administration of ginsenosides may be primarily mediated through the inhibition of tumor invasion, migration and growth of tumor cells by their metabolite M1. Pharmacokinetic study after oral administration of ginsenoside Rb1 revealed that M1 was detected in serum for 24 h by HPLC analysis but Rb1 was not detected. M1, with anti-metastatic property, inhibited the proliferation of murine and human tumor cells in a time- and concentration-dependent manner in vitro, and also induced apoptotic cell death (the ladder fragmentation of the extracted DNA). The induction of apoptosis by M1 involved the up-regulation of the cyclin-dependent kinase(CDK) inhibitor $p27^{Kip1}$ as well as the down-regulation of a proto-oncogene product c-Myc and cyclin D1 in a time-dependent manner. Thus, M1 might cause the cell-cycle arrest (G1 phase arrest) in honor cells through the up/down-regulation of these cell-growth related molecules, and consequently induce apoptosis. The nucleosomal distribution of fluorescence-labeled M1 suggests that the modification of these molecules is induced by transcriptional regulation. Tumor-induced angiogenesis (neovascularization) is one of the most important events concerning tumor growth and metastasis. Neovascularization toward and into tumor is a crucial step for the delivery of nutrition and oxygen to tumors, and also functions as the metastatic pathway to distant organs. M1 inhibited the tube-like formation of hepatic sinusoidal endothelial (HSE) cells induced by the conditioned medium of colon 26-L5 cells in a concentration-dependent manner. However, M1 at the concentrations used in this study did not affect the growth of HSE cells in vitro.

Effects of Benzene, Phenol and Hydroquinone on Proliferation, Differentiation and Migration of Human Eosinophilic EoL-1 Cells

  • Moon, So-Hee;Yang, Eun-Ju;Song, Bo-Bae;Kim, Bo-Mi;Lee, Ji-Sook;Kim, In-Sik
    • Biomedical Science Letters
    • /
    • v.16 no.3
    • /
    • pp.179-185
    • /
    • 2010
  • Benzene is known as a ubiquitous air pollutant and has a carcinogenic influence on the human body. Benzene is also metabolized to other volatile organic compounds (VOCs) in the body such as phenol and hydroquinone (HQ). The metabolites are accumulated and further oxidized by myeloperoxidase in bone marrow. They act as toxic agents and cause a variety of diseases, including cancer, atopic dermatitis and asthma. In this study, we examined the effects of benzene and its metabolites on proliferation, differentiation and chemotaxis of EoL-1 cells, the human eosinophilic leukemia cell line. These chemicals had no effect on the proliferation of EoL-1 cells. Benzene decreased the differentiation of EoL-1 cells induced by butyric acid. HQ was induced the cell death during butyric acid-induced EoL-1 cell differentiation. In a chemotaxis experiment, benzene, phenol and HQ enhanced the cell migration induced by Lkn-1 but not by MCP-1, eotaxin, MIP-$1{\alpha}$ and RANTES. These findings provide the effect of VOCs on the regulation of eosinophil-involved immune response.

Burkholderia Diversity and Versatility: An Inventory of the Extracellular Products

  • Vial, Ludovic;Groleau, Marie-Christine;Dekimpe, Valerie;Deziel, Eric
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.9
    • /
    • pp.1407-1429
    • /
    • 2007
  • The Burkholderia genus consists of over 40 Gram-negative, ${\beta}$-proteobacteria species that occupy remarkably diverse ecological niches. This genus contains species pathogenic to human, animals, and plants, as well as species involved in promoting plant growth and biodegradation of pollutants. This is largely explained by the extraordinary versatility of Burkholderia, as reflected by the remarkable diversity of extracellular products released by these bacteria. We exhaustively surveyed the extracellular enzymes, siderophores, toxins, antimicrobials, and other secondary metabolites produced by the members of this very diverse genus. Available information on regulation, especially quorum sensing mechanisms, and secretion is highlighted.

Phytotoxins of Pseudomonas syringae and PCR Primers for Detection of Phytotoxin-Producing Strains (Pseudomonas syringae의 식물독소와 독소 생산 균주의 검출을 위한 PCR Primer)

  • 정재성;한효심;고영진
    • Research in Plant Disease
    • /
    • v.7 no.3
    • /
    • pp.123-133
    • /
    • 2001
  • Many pathovars of the species Pseudomonas syringae are known to produce different phytotoxins as secondary metabolites. Although phytotoxins generally enhance the virulence of P. syringae, they are not required for pathogenesis. Among the phytotoxins produced by P. syringae, lipodepsipeptides, coronatine, phaseolotoxin, and tabtoxin are the most well-known toxins which have been intensively studied for their structure, mode of action, biosynthesis, and regulation. A polymerase chain reaction (PCR) technique that amplifies a segment of the phytotoxin gene cluster using a primer set has been developed in recent years. This method offers the advantages of speed and sensitivity compared to the approaches based on physiological and biochemical methods. PCR detection of genes involved in the production of toxins could be exploited for early diagnosis of plant diseases caused by P. syringae pathovars.

  • PDF

Prostaglandins Involving in Blastocyst Development through Calcium Mediated Signaling Pathway

  • Lee, Ja-Myong;Kwon, Hyuck-Chan;Lee, Seung-Jea;Cheon, Yong-Pil
    • Development and Reproduction
    • /
    • v.15 no.1
    • /
    • pp.17-24
    • /
    • 2011
  • Lipid metabolites involved in cellular regulation as signaling mediators. Prostaglandins (PGs), metabolites of lipid are involved to pregnancy at the time of implantation but the functional roles of PGs on embryo development are still controversy and largely unknown. In previous report, the levels of $PGE_2$ and $PGF_{2a}$ at embryos of morula stage and blastocyst stage were explored (Cheon et al., 1998). In this study, the previous suggestion was confirmed and the possible downstream mediator of prostaglandin $E_2$ and prostaglandin $F_{2a}$ on the expansion and hatching of mouse embryo was examined. As expected, developmental rate of the blastocyst to expanded stage was a concentration-response curve that showed the highest expansion rate at 10 ${\mu}M$ $PGE_2$, but at 100 ${\mu}M$ $PGE_2$, the rate was decreased. In contrast to the $PGE_2$, $PGF_{2a}$ stimulated expansion without toxicity at highest concentration. Cotreatment of PGs with indomethacin overcame the inhibitory effects of indomethacin in expansion. Exogenous PGs also improved the development of expanded embryos to the hatching stage. Besides, PGs receptors' transcripts detected at blastocyst. $PGE_2$ was caused of calcium fluctuation in the blastocyst but $PGF_{2a}$ did not. The changes of intracellular calcium concentration were different between indomethacin pretreated embryos and non-treated embryos. Based on these results it is suggested that PGs work as paracrine and/or autocrine factors through calcium and the others which were not identified in this study.